import os.path import numpy as np import pandas as pd import torch import yaml import librosa import soundfile as sf from tqdm import tqdm from diffusers import DDIMScheduler from pitch_controller.models.unet import UNetPitcher from pitch_controller.utils import minmax_norm_diff, reverse_minmax_norm_diff from pitch_controller.modules.BigVGAN.inference import load_model from utils import get_mel, get_world_mel, get_f0, f0_to_coarse, show_plot, get_matched_f0, log_f0 @torch.no_grad() def template_pitcher(source, pitch_ref, model, hifigan, steps=50, shift_semi=0): source_mel = get_world_mel(source, sr=sr) f0_ref = get_matched_f0(source, pitch_ref, 'world') f0_ref = f0_ref * 2 ** (shift_semi / 12) f0_ref = log_f0(f0_ref, {'f0_bin': 345, 'f0_min': librosa.note_to_hz('C2'), 'f0_max': librosa.note_to_hz('C#6')}) source_mel = torch.from_numpy(source_mel).float().unsqueeze(0).to(device) f0_ref = torch.from_numpy(f0_ref).float().unsqueeze(0).to(device) noise_scheduler = DDIMScheduler(num_train_timesteps=1000) generator = torch.Generator(device=device).manual_seed(2024) noise_scheduler.set_timesteps(steps) noise = torch.randn(source_mel.shape, generator=generator, device=device) pred = noise source_x = minmax_norm_diff(source_mel, vmax=max_mel, vmin=min_mel) for t in tqdm(noise_scheduler.timesteps): pred = noise_scheduler.scale_model_input(pred, t) model_output = model(x=pred, mean=source_x, f0=f0_ref, t=t, ref=None, embed=None) pred = noise_scheduler.step(model_output=model_output, timestep=t, sample=pred, eta=1, generator=generator).prev_sample pred = reverse_minmax_norm_diff(pred, vmax=max_mel, vmin=min_mel) pred_audio = hifigan(pred) pred_audio = pred_audio.cpu().squeeze().clamp(-1, 1) return pred_audio if __name__ == '__main__': min_mel = np.log(1e-5) max_mel = 2.5 sr = 24000 use_gpu = torch.cuda.is_available() device = 'cuda' if use_gpu else 'cpu' # load diffusion model config = yaml.load(open('pitch_controller/config/DiffWorld_24k.yaml'), Loader=yaml.FullLoader) mel_cfg = config['logmel'] ddpm_cfg = config['ddpm'] unet_cfg = config['unet'] model = UNetPitcher(**unet_cfg) unet_path = 'ckpts/world_fixed_40.pt' state_dict = torch.load(unet_path) for key in list(state_dict.keys()): state_dict[key.replace('_orig_mod.', '')] = state_dict.pop(key) model.load_state_dict(state_dict) if use_gpu: model.cuda() model.eval() # load vocoder hifi_path = 'ckpts/bigvgan_24khz_100band/g_05000000.pt' hifigan, cfg = load_model(hifi_path, device=device) hifigan.eval() pred_audio = template_pitcher('examples/off-key.wav', 'examples/reference.wav', model, hifigan, steps=50, shift_semi=0) sf.write('output_template.wav', pred_audio, samplerate=sr)