{"policy_class": {":type:": "", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f675b1ec240>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVtwAAAAAAAAB9lCiMCG5ldF9hcmNolF2UfZQojAJwaZRdlChNAAJNAAJNAAJljAJ2ZpRdlChNAAJNAAJNAAJldWGMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "net_arch": [{"pi": [512, 512, 512], "vf": [512, 512, 512]}], "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000080, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717620001029747119, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVqwUAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolpAAAAAAAAAAirWFP2W2lj83CAw+ILPDvavWiz43CAw+4H+oPbZGVb/7Cww+Z7HHvSZ6nD86CAw+K3tnv49Dmj9zDAw+sZ4sv/hjh7+tCgw+7tn+vpq4ML83CAw+uMvXPjZSH7/7Cww+00Eev/vmND/7Cww+gywhvn4QPD37Cww+VnU2v6x0O777Cww+K91NP6nmG79zDAw+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksMSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolpAAAAAAAAAAuNkov7nwnT9cWoi/+fmsPvBtYb/OzLY/i2XTv4tjnL4F+LA/3zgWP7cHhD/d54m/zP9BPplJL77d54m/V1h4v9WSgL7qY+2+qjibv8Ap0T+TkwU/tvChPys3dr/d54m/9KAWv0ADvz/CRbU/baJgPvknIb9hiKc/lyzlPgfVDz9ENS2/7fGPvwCPIT4c5JI/lGgOSwxLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAMAAAAAAAASxALA159ZPx4Z/L4JVcE/Sao9v8bPBb8BAUm/irWFP2W2lj83CAw+0eFOvLot0bs16468qMhnPdz2FTvMEH09g61gu04lebzGwoM7h5ZOv2nlFb93xR+/0GyKvzKBwb80gK4+fb2CvyCzw72r1os+NwgMPtHhTry6LdG72a6NvKXIZz3A9hU7zBB9PYOtYLtOJXm8G8ODO5rOFL8+hGc+d+q1PUjFXz2ACCk/uKsXP6cakD/gf6g9tkZVv/sLDD63o1O8e1jQuyUNh7wbL2k9xkYnO8wQfT1CrWC7PyV5vI1ajztL0G8/T54xvthuQT6Ag5c+qCXMP1iUFMAIaYa/Z7HHvSZ6nD86CAw+uOJOvLst0bukKIy8oshnPZztFTtQEH09IXtgu00lebyDw4M7RlZ5P71OZz/9Csg+AvTcPvfzGr/oBqQ/Bq6Cvyt7Z7+PQ5o/cwwMPm2zUbw1/tG7jQSIvPSOZz3LnjM7BVZ8PecKt7vMjYe8bBuIOxFglT/lmeW9fzcHvjN3uz36y3S/PkSCv75zT7+xniy/+GOHv60KDD7AEVO8Es3Lu4yvjrw7gmg9oR8QO8wQfT2ErWC7TiV5vBgohDujGoQ/hM4zP/odOL+YrTw/3a2mvh8ziT/rnGQ/7tn+vpq4ML83CAw+B1lTvFkp4LuFJIm8Q2hoPZ7jCTvMEH09hK1gu08leby804c7vh6CP6RNPz/Hv6I+YyXqPtwV7b7TkeO/HPWFv7jL1z42Uh+/+wsMPnKjU7yhV9C7olB3vA8vaT20RCc7zBB9PUKtYLs/JXm8flePOx1LED+noCU+F0ZWv4iuCL5Gj3o/hMqDvokeSb/TQR6/++Y0P/sLDD7Io1O8pljQu1EaibweL2k98kYnO88QfT0mrGC7MiV5vBpbjzu2e2G+rLrCv8HGVb/KJls+TB1+vsT9UT+FOJQ/gywhvn4QPD37Cww+rKNTvFtY0LsLWYW8GS9pPXdGJzvMEH09Qq1guz8lebwYWo87NdmKP4Qkuz4YW1e/5SARP8YWmr87wlu9UGmGv1Z1Nr+sdDu++wsMPqijU7xNWNC7DKqEvBkvaT1YRic7zBB9PUKtYLs/JXm86VmPO10hyL9bCWE/M0hHvwNczL+MR52/65dwPjMCkD8r3U0/qeYbv3MMDD7kGlO8QLTWu0S2jrxI8Gk9i4YFOwZWfD3M8wa7HIlWvHJ7gzuUaA5LDEsThpRoEnSUUpR1Lg==", "achieved_goal": "[[ 1.0446026 1.1774412 0.13675009]\n [-0.0955565 0.27312216 0.13675009]\n [ 0.08227515 -0.8331102 0.13676445]\n [-0.09750634 1.2224777 0.13675013]\n [-0.90422314 1.2051867 0.13676624]\n [-0.67429644 -1.0577383 0.13675947]\n [-0.49775642 -0.6903168 0.13675009]\n [ 0.42147613 -0.6223482 0.13676445]\n [-0.6181919 0.7066495 0.13676445]\n [-0.15739636 0.04591417 0.13676445]\n [-0.7127279 -0.18306226 0.13676445]\n [ 0.804156 -0.60898834 0.13676624]]", "desired_goal": "[[-0.6595721 1.2339088 -1.0652575 ]\n [ 0.33784464 -0.88058376 1.4281251 ]\n [-1.6515363 -0.30544695 1.382569 ]\n [ 0.5868053 1.0314854 -1.0773884 ]\n [ 0.18945235 -0.17117919 -1.0773884 ]\n [-0.97009796 -0.25112024 -0.4636529 ]\n [-1.2126667 1.6340866 0.52178305]\n [ 1.2651584 -0.9617793 -1.0773884 ]\n [-0.58839345 1.4922867 1.4161913 ]\n [ 0.2193696 -0.6295162 1.3088495 ]\n [ 0.44760582 0.5618443 -0.676594 ]\n [-1.1245705 0.15777206 1.1475863 ]]", "observation": "[[-2.0432172e+00 8.5009521e-01 -4.9237913e-01 1.5104076e+00\n -7.4087960e-01 -5.2270162e-01 -7.8517157e-01 1.0446026e+00\n 1.1774412e+00 1.3675009e-01 -1.2627081e-02 -6.3836249e-03\n -1.7446140e-02 5.6587845e-02 2.2882735e-03 6.1783597e-02\n -3.4283109e-03 -1.5206648e-02 4.0210215e-03]\n [-8.0698436e-01 -5.8553177e-01 -6.2410682e-01 -1.0814457e+00\n -1.5117552e+00 3.4082186e-01 -1.0214077e+00 -9.5556498e-02\n 2.7312216e-01 1.3675009e-01 -1.2627081e-02 -6.3836249e-03\n -1.7295288e-02 5.6587834e-02 2.2882670e-03 6.1783597e-02\n -3.4283109e-03 -1.5206648e-02 4.0210611e-03]\n [-5.8127749e-01 2.2609040e-01 8.8826112e-02 5.4631501e-02\n 6.6028595e-01 5.9246397e-01 1.1258134e+00 8.2275152e-02\n -8.3311021e-01 1.3676445e-01 -1.2917451e-02 -6.3582039e-03\n -1.6485760e-02 5.6929689e-02 2.5524362e-03 6.1783597e-02\n -3.4282957e-03 -1.5206634e-02 4.3748082e-03]\n [ 9.3677205e-01 -1.7345546e-01 1.8889940e-01 2.9592514e-01\n 1.5948992e+00 -2.3215542e+00 -1.0500803e+00 -9.7506337e-02\n 1.2224777e+00 1.3675013e-01 -1.2627296e-02 -6.3836253e-03\n -1.7109223e-02 5.6587823e-02 2.2877222e-03 6.1783135e-02\n -3.4253078e-03 -1.5206647e-02 4.0211095e-03]\n [ 9.7397268e-01 9.0354520e-01 3.9070883e-01 4.3154913e-01\n -6.0528511e-01 1.2814608e+00 -1.0209358e+00 -9.0422314e-01\n 1.2051867e+00 1.3676624e-01 -1.2799126e-02 -6.4084777e-03\n -1.6603732e-02 5.6532815e-02 2.7407880e-03 6.1605472e-02\n -5.5860165e-03 -1.6547106e-02 4.1536596e-03]\n [ 1.1669942e+00 -1.1210994e-01 -1.3204764e-01 9.1535948e-02\n -9.5623744e-01 -1.0177076e+00 -8.1035984e-01 -6.7429644e-01\n -1.0577383e+00 1.3675947e-01 -1.2882650e-02 -6.2195146e-03\n -1.7417692e-02 5.6764822e-02 2.1991509e-03 6.1783597e-02\n -3.4283111e-03 -1.5206648e-02 4.0330999e-03]\n [ 1.0320629e+00 7.0236993e-01 -7.1920741e-01 7.3702383e-01\n -3.2554522e-01 1.0718726e+00 8.9301938e-01 -4.9775642e-01\n -6.9031680e-01 1.3675009e-01 -1.2899644e-02 -6.8408665e-03\n -1.6741047e-02 5.6740057e-02 2.1040211e-03 6.1783597e-02\n -3.4283111e-03 -1.5206649e-02 4.1451138e-03]\n [ 1.0165632e+00 7.4727845e-01 3.1786940e-01 4.5731649e-01\n -4.6305740e-01 -1.7778877e+00 -1.0465426e+00 4.2147613e-01\n -6.2234819e-01 1.3676445e-01 -1.2917386e-02 -6.3581024e-03\n -1.5094908e-02 5.6929644e-02 2.5523128e-03 6.1783597e-02\n -3.4282957e-03 -1.5206634e-02 4.3744436e-03]\n [ 5.6364614e-01 1.6174565e-01 -8.3700699e-01 -1.3347828e-01\n 9.7874868e-01 -2.5740445e-01 -7.8562218e-01 -6.1819190e-01\n 7.0664948e-01 1.3676445e-01 -1.2917466e-02 -6.3582240e-03\n -1.6736181e-02 5.6929700e-02 2.5524464e-03 6.1783608e-02\n -3.4282296e-03 -1.5206622e-02 4.3748738e-03]\n [-2.2019848e-01 -1.5213218e+00 -8.3506399e-01 2.1401516e-01\n -2.4815863e-01 8.2027841e-01 1.1579748e+00 -1.5739636e-01\n 4.5914166e-02 1.3676445e-01 -1.2917440e-02 -6.3581890e-03\n -1.6277811e-02 5.6929681e-02 2.5524178e-03 6.1783597e-02\n -3.4282957e-03 -1.5206634e-02 4.3747537e-03]\n [ 1.0847536e+00 3.6551297e-01 -8.4123373e-01 5.6690818e-01\n -1.2038200e+00 -5.3652029e-02 -1.0500889e+00 -7.1272790e-01\n -1.8306226e-01 1.3676445e-01 -1.2917437e-02 -6.3581825e-03\n -1.6194366e-02 5.6929681e-02 2.5524106e-03 6.1783597e-02\n -3.4282957e-03 -1.5206634e-02 4.3747318e-03]\n [-1.5635182e+00 8.7904900e-01 -7.7844542e-01 -1.5965580e+00\n -1.2287459e+00 2.3495452e-01 1.1250671e+00 8.0415601e-01\n -6.0898834e-01 1.3676624e-01 -1.2884829e-02 -6.5522492e-03\n -1.7420895e-02 5.7113916e-02 2.0374383e-03 6.1605476e-02\n -2.0592092e-03 -1.3094213e-02 4.0125186e-03]]"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVfwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLDIWUjAFDlHSUUpQu"}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVqwUAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolpAAAAAAAAAAqxnEPKrb4j0K16M8auehvNePyj0K16M83KtZvfP4/DwK16M8bic7vTHrvjwK16M8HW4Uvp3iLb0K16M83i7KPWm5eb0K16M8DfnKu5Jb9T0K16M8j/jZvDqBCz4K16M8md4WvdMPej0K16M8wtnpvYTvi70K16M8Tp/FPVpTnb0K16M8ejgPPtL+sT0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksMSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolpAAAAAAAAAAhnxqPacEGD4K16M8QnvoO/2pDT4UPD0+0wi7u+gJDLxh1FY+2WcWvlzwmj2nBCA+I6bRPa0NEj4TWgQ9rv0QvtAW3z1OtC0+kyfhvSwuZr2xymA+cS7YvFmEyjwK16M8xDi8PInn5L3nWRo+SYhGvNLFbjwK16M8KN+4PYBm970K16M8FSADPgYEdD3DSqc9lGgOSwxLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWkAMAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAqxnEPKrb4j0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAGrnobzXj8o9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADcq1m98/j8PArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAbic7vTHrvjwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAB1uFL6d4i29CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAADeLso9abl5vQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAADfnKu5Jb9T0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAI/42bw6gQs+CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACZ3ha90w96PQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAwtnpvYTvi70K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAE6fxT1aU529CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAB6OA8+0v6xPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaA5LDEsThpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.02393802 0.11077054 0.02 ]\n [-0.01976367 0.09890717 0.02 ]\n [-0.05314241 0.03088043 0.02 ]\n [-0.0456919 0.02330551 0.02 ]\n [-0.1449513 -0.04245244 0.02 ]\n [ 0.0987222 -0.06096784 0.02 ]\n [-0.00619424 0.11980356 0.02 ]\n [-0.02660778 0.13623515 0.02 ]\n [-0.03683338 0.06105025 0.02 ]\n [-0.11418487 -0.06832793 0.02 ]\n [ 0.09649526 -0.07681914 0.02 ]\n [ 0.13986388 0.08691181 0.02 ]]", "desired_goal": "[[ 0.05724766 0.14845525 0.02 ]\n [ 0.00709477 0.13834377 0.18479949]\n [-0.00570784 -0.00854728 0.20979454]\n [-0.14688052 0.07565376 0.15626775]\n [ 0.10236766 0.1426303 0.03231246]\n [-0.14159271 0.10893023 0.16963312]\n [-0.10993876 -0.05619638 0.2195232 ]\n [-0.02638933 0.02472131 0.02 ]\n [ 0.02297629 -0.11176974 0.15073358]\n [-0.01211745 0.01457353 0.02 ]\n [ 0.09026939 -0.12080097 0.02 ]\n [ 0.12805207 0.05957415 0.08168557]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 2.3938021e-02\n 1.1077054e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.9763667e-02\n 9.8907165e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -5.3142413e-02\n 3.0880427e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -4.5691900e-02\n 2.3305507e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.4495130e-01\n -4.2452443e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 9.8722205e-02\n -6.0967837e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -6.1942399e-03\n 1.1980356e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -2.6607780e-02\n 1.3623515e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -3.6833379e-02\n 6.1050247e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.1418487e-01\n -6.8327934e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 9.6495256e-02\n -7.6819137e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 1.3986388e-01\n 8.6911812e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -8.000000000008001e-05, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHAAAAAAAAAACMAWyUSwGMAXSUR0CzPIMAmzBzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPIVa4c3mdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPGAssg+ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPPoEW69TdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPLvD+BH1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPQ7Hp8nedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPUeNPxhEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPLNEgGKRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPNKY/mkndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPPHE/B3zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPYqR+z+ndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPU5YgaFVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPbmw7kn1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPbd9hJAddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPZJFkQPJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPjPzz3AVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPfDrmhdudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPkYBV+7UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPoAQ6IWQdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CzPogSWZ7YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPe4DLbHqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPgygK4QSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPioPCl7/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPscKgIyCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPn3974SIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPujj/+85dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPvaMvRJFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPtFR51NhdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzP3Brvb48dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPy/NzKcNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzP4LY5DJEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzP8HJYDDCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzPyEqpcX4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzP0Ai7kGSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzP2aDbrTqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzP/7nX/YKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzP7UwrUb2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQCBy4nWrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQCnc1wYMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQAToIOYqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQKEcCHRDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQGnjp9qldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQLhiTdLydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQPd6Tnq3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQGOGfwqidX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CzQGkGFBY3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQIBtLteEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQJ+Vkc0cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQTlUADJVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQPlC5VfedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQWUjgQ6IdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQX5+lTFVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQVlZkkKNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQf2l/H5rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQbi3PRiPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQgvhESdwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQkwfZElWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQbYIBzV+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQc615Sm7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQe7vXsgMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQo9NnGsFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQlBk7OmjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQr0Uj9n9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQsaU3XI2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQqGd7OVxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQzvBJqZddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQvdhJAdGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQ01rylN2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQ4ypNsWPdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CzQ5SKm8/VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQvlEd/8VdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQxAV9F4LdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQzPQ4S6EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQ8zynUDudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQ4Z5Rjz7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQ/Nqk/KRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQ/kjxCpndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzQ9QIhQnAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRG/FzdULdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRDD101ZUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRIH8GcFydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRMSauwHJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRC3TRYzSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzREU4zabndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRGPaURnOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRPiT6i0wdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRLjakAPvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRSGza9K3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRSSSeRPodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRP+TJQtSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRZ/vfCQ+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRVuO801qdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRbB7E5yVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRfKs+3YudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRVbiMo+fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRW6gElmfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRYt8qnWKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRih6v7m/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzReMVHnU2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CzRk+IqLCOdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIiJiYmJiYmJiYmJiYmJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYiJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYiJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYllLg=="}, "_n_updates": 5556, "observation_space": {":type:": "", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 12, "n_steps": 15, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "rollout_buffer_class": {":type:": "", ":serialized:": "gAWVOgAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwRRGljdFJvbGxvdXRCdWZmZXKUk5Qu", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observation_space': , 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray]}", "__doc__": "\n Dict Rollout buffer used in on-policy algorithms like A2C/PPO.\n Extends the RolloutBuffer to use dictionary observations\n\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to Monte-Carlo advantage estimate when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ", "__init__": "", "reset": "", "add": "", "get": "", "_get_samples": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6794b22fc0>"}, "rollout_buffer_kwargs": {}, "normalize_advantage": false, "lr_schedule": {":type:": "", ":serialized:": "gAWVsQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGAvaG9tZS90b21lay9weXRvcmNoX2xlYXJuaW5nL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjAg8bGFtYmRhPpRLYUMCDACUjA52YWx1ZV9zY2hlZHVsZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS90b21lay9weXRvcmNoX2xlYXJuaW5nL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA+MDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDBIgAUwCUaAkpjAFflIWUaA6MBGZ1bmOUS4VDAgQBlIwDdmFslIWUKXSUUpRoFU5OaB0pUpSFlHSUUpRoI2g9fZR9lChoGGg0aCaMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUaCh9lGgqTmgrTmgsaBloLU5oLmgwRz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjCFlFKUhZRoRV2UaEd9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.15.146.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Thu Jan 11 04:09:03 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.3.2", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1", "OpenAI Gym": "0.26.2"}}