Delete lib/infer_libs/rvc.py
Browse files- lib/infer_libs/rvc.py +0 -147
lib/infer_libs/rvc.py
DELETED
|
@@ -1,147 +0,0 @@
|
|
| 1 |
-
from multiprocessing import cpu_count
|
| 2 |
-
from pathlib import Path
|
| 3 |
-
|
| 4 |
-
import torch
|
| 5 |
-
from fairseq import checkpoint_utils
|
| 6 |
-
from scipy.io import wavfile
|
| 7 |
-
|
| 8 |
-
from infer_pack.models import (
|
| 9 |
-
SynthesizerTrnMs256NSFsid,
|
| 10 |
-
SynthesizerTrnMs256NSFsid_nono,
|
| 11 |
-
SynthesizerTrnMs768NSFsid,
|
| 12 |
-
SynthesizerTrnMs768NSFsid_nono,
|
| 13 |
-
)
|
| 14 |
-
from my_utils import load_audio
|
| 15 |
-
from infer import VC
|
| 16 |
-
|
| 17 |
-
BASE_DIR = Path(__file__).resolve().parent
|
| 18 |
-
|
| 19 |
-
class Config:
|
| 20 |
-
def __init__(self, device, is_half):
|
| 21 |
-
self.device = device
|
| 22 |
-
self.is_half = is_half
|
| 23 |
-
self.n_cpu = 0
|
| 24 |
-
self.gpu_name = None
|
| 25 |
-
self.gpu_mem = None
|
| 26 |
-
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
|
| 27 |
-
|
| 28 |
-
def device_config(self) -> tuple:
|
| 29 |
-
if torch.cuda.is_available():
|
| 30 |
-
i_device = int(self.device.split(":")[-1])
|
| 31 |
-
self.gpu_name = torch.cuda.get_device_name(i_device)
|
| 32 |
-
if (
|
| 33 |
-
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
|
| 34 |
-
or "P40" in self.gpu_name.upper()
|
| 35 |
-
or "1060" in self.gpu_name
|
| 36 |
-
or "1070" in self.gpu_name
|
| 37 |
-
or "1080" in self.gpu_name
|
| 38 |
-
):
|
| 39 |
-
print("16 series/10 series P40 forced single precision")
|
| 40 |
-
self.is_half = False
|
| 41 |
-
else:
|
| 42 |
-
self.gpu_name = None
|
| 43 |
-
self.gpu_mem = int(
|
| 44 |
-
torch.cuda.get_device_properties(i_device).total_memory
|
| 45 |
-
/ 1024
|
| 46 |
-
/ 1024
|
| 47 |
-
/ 1024
|
| 48 |
-
+ 0.4
|
| 49 |
-
)
|
| 50 |
-
elif torch.backends.mps.is_available():
|
| 51 |
-
print("No supported N-card found, use MPS for inference")
|
| 52 |
-
self.device = "mps"
|
| 53 |
-
else:
|
| 54 |
-
print("No supported N-card found, use CPU for inference")
|
| 55 |
-
self.device = "cpu"
|
| 56 |
-
self.is_half = True
|
| 57 |
-
|
| 58 |
-
if self.n_cpu == 0:
|
| 59 |
-
self.n_cpu = cpu_count()
|
| 60 |
-
|
| 61 |
-
if self.is_half:
|
| 62 |
-
# 6G memory config
|
| 63 |
-
x_pad = 3
|
| 64 |
-
x_query = 10
|
| 65 |
-
x_center = 60
|
| 66 |
-
x_max = 65
|
| 67 |
-
else:
|
| 68 |
-
# 5G memory config
|
| 69 |
-
x_pad = 1
|
| 70 |
-
x_query = 6
|
| 71 |
-
x_center = 38
|
| 72 |
-
x_max = 41
|
| 73 |
-
|
| 74 |
-
if self.gpu_mem is not None and self.gpu_mem <= 4:
|
| 75 |
-
x_pad = 1
|
| 76 |
-
x_query = 5
|
| 77 |
-
x_center = 30
|
| 78 |
-
x_max = 32
|
| 79 |
-
|
| 80 |
-
return x_pad, x_query, x_center, x_max
|
| 81 |
-
|
| 82 |
-
def load_hubert(device, is_half, model_path):
|
| 83 |
-
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task([model_path], suffix='')
|
| 84 |
-
hubert = models[0]
|
| 85 |
-
hubert = hubert.to(device)
|
| 86 |
-
|
| 87 |
-
if is_half:
|
| 88 |
-
hubert = hubert.half()
|
| 89 |
-
else:
|
| 90 |
-
hubert = hubert.float()
|
| 91 |
-
|
| 92 |
-
hubert.eval()
|
| 93 |
-
return hubert
|
| 94 |
-
|
| 95 |
-
def get_vc(device, is_half, config, model_path):
|
| 96 |
-
cpt = torch.load(model_path, map_location='cpu')
|
| 97 |
-
if "config" not in cpt or "weight" not in cpt:
|
| 98 |
-
raise ValueError(f'Incorrect format for {model_path}. Use a voice model trained using RVC v2 instead.')
|
| 99 |
-
|
| 100 |
-
tgt_sr = cpt["config"][-1]
|
| 101 |
-
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
|
| 102 |
-
if_f0 = cpt.get("f0", 1)
|
| 103 |
-
version = cpt.get("version", "v1")
|
| 104 |
-
|
| 105 |
-
if version == "v1":
|
| 106 |
-
if if_f0 == 1:
|
| 107 |
-
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
|
| 108 |
-
else:
|
| 109 |
-
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
| 110 |
-
elif version == "v2":
|
| 111 |
-
if if_f0 == 1:
|
| 112 |
-
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=is_half)
|
| 113 |
-
else:
|
| 114 |
-
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
| 115 |
-
|
| 116 |
-
del net_g.enc_q
|
| 117 |
-
print(net_g.load_state_dict(cpt["weight"], strict=False))
|
| 118 |
-
net_g.eval().to(device)
|
| 119 |
-
|
| 120 |
-
if is_half:
|
| 121 |
-
net_g = net_g.half()
|
| 122 |
-
else:
|
| 123 |
-
net_g = net_g.float()
|
| 124 |
-
|
| 125 |
-
vc = VC(tgt_sr, config)
|
| 126 |
-
return cpt, version, net_g, tgt_sr, vc
|
| 127 |
-
|
| 128 |
-
def rvc_infer(index_path, index_rate, input_path, output_path, pitch_change, f0_method, cpt, version, net_g, filter_radius, tgt_sr, rms_mix_rate, protect, crepe_hop_length, vc, hubert_model):
|
| 129 |
-
# Load the input audio file
|
| 130 |
-
audio = load_audio(input_path, 16000)
|
| 131 |
-
|
| 132 |
-
# Initialize a list to keep track of times
|
| 133 |
-
times = [0, 0, 0]
|
| 134 |
-
|
| 135 |
-
# Determine if F0 (fundamental frequency) is used
|
| 136 |
-
if_f0 = cpt.get('f0', 1)
|
| 137 |
-
|
| 138 |
-
# Run the voice conversion pipeline
|
| 139 |
-
audio_opt = vc.pipeline(
|
| 140 |
-
hubert_model, net_g, 0, audio, input_path, times,
|
| 141 |
-
pitch_change, f0_method, index_path, index_rate,
|
| 142 |
-
if_f0, filter_radius, tgt_sr, 0, rms_mix_rate,
|
| 143 |
-
version, protect, crepe_hop_length
|
| 144 |
-
)
|
| 145 |
-
|
| 146 |
-
# Write the output audio to a file
|
| 147 |
-
wavfile.write(output_path, tgt_sr, audio_opt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|