--- library_name: transformers license: apache-2.0 base_model: distilroberta-base tags: - text-classification - generated_from_trainer metrics: - accuracy - f1 model-index: - name: platzi-distilroberta-base-mrpc-glue-hector-nieto results: [] --- # platzi-distilroberta-base-mrpc-glue-hector-nieto This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue and the mrpc datasets. It achieves the following results on the evaluation set: - Loss: 0.4723 - Accuracy: 0.8407 - F1: 0.8889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 0.5407 | 1.0893 | 500 | 0.4723 | 0.8407 | 0.8889 | | 0.3421 | 2.1786 | 1000 | 0.6403 | 0.8480 | 0.8912 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Tokenizers 0.21.0