Transformer_500M / modeling_minitransformer.py
yagizdevre's picture
transformer new
a2fbb2f
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutput
from .modules import Attention
from .utils import nearest_power_of_two
from .layers import AttentionLayer
from .configuration_minitransformer import MiniTransformerConfig
from .attn_masks import causal_mask
from .attn_mods import generate_tanh_softcap
from .rotary_emb import precompute_freqs_cis
try:
from liger_kernel.transformers.rms_norm import LigerRMSNorm as TritonNorm
triton_norm = True
except ImportError as e:
print(
f"Unable to import Triton-based RMSNorm: {e}. Falling back to PyTorch implementation."
)
from torch.nn import RMSNorm
triton_norm = False
# Load the tokenizer
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Hazan-Lab/Transformer_500M"
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True
)
class MiniTransformer(PreTrainedModel):
config_class = MiniTransformerConfig
def __init__(self, config) -> None:
super(MiniTransformer, self).__init__(config)
self.num_layers = config.num_layers
assert config.dim % config.num_heads == 0, f"dim ({self.dim}) must be divisible num_heads ({self.num_heads})"
self.head_dim = config.dim // config.num_heads
logit_softcap = generate_tanh_softcap(soft_cap=config.softcap)
# From pytorch/pytorch#123411, we set persistent=True for torch.compile and PP compatibility
self.register_buffer("freqs_cis", precompute_freqs_cis(
head_dim=self.head_dim,
max_seq_len=config.seq_len,
theta=config.theta,
), persistent=True)
self.tok_emb = nn.Embedding(config.vocab_size, config.dim)
self.dropout = nn.Dropout(config.dropout)
self.layers = nn.ModuleList()
for _ in range(self.num_layers):
layer = AttentionLayer(config, mask_mod=causal_mask, score_mod=logit_softcap)
self.layers.append(layer)
self.norm = nn.RMSNorm(config.dim)
self.lm_head = nn.Linear(config.dim, config.vocab_size, bias=config.bias)
# self.tok_emb.weight = self.lm_head.weight
self.std = (config.dim) ** -0.5
self.apply(self._init_weights)
print("Model Parameter Count: %.2fM\n" % (self._get_num_params() / 1e6,))
def forward(
self,
input_ids: torch.Tensor,
labels: torch.Tensor = None,
**kwargs
) -> CausalLMOutput:
# Compute embeddings
tok_emb = self.tok_emb(input_ids)
for layer in self.layers:
tok_emb = layer(tok_emb, self.freqs_cis)
# Normalize and project to vocabulary
tok_emb = self.norm(tok_emb)
logits = self.lm_head(tok_emb)
loss = None
if labels is not None:
# Shift so that tokens predict the next token
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)),
shift_labels.view(-1)
)
return CausalLMOutput(
loss=loss,
logits=logits,
)
def _get_num_params(self):
n_params = sum(p.numel() for p in self.parameters())
if hasattr(self, "pos_emb") and self.pos_emb is not None:
n_params -= self.pos_emb.weight.numel()
if self.tok_emb.weight is self.lm_head.weight:
n_params -= self.tok_emb.weight.numel()
return n_params
def _init_weights(self, module):
if isinstance(module, nn.Linear):
if hasattr(module, "SCALE_INIT"):
self.std *= (2 * self.num_layers) ** -0.5
torch.nn.init.normal_(module.weight, mean=0.0, std=self.std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=self.std)
@staticmethod
def top_k_top_p_filtering(
logits: torch.Tensor,
top_k: int = 50,
top_p: float = 0.95,
filter_value: float = float("-inf"),
):
"""
Filters a distribution of logits using top-k and/or nucleus (top-p) filtering.
"""
# top_k
if top_k > 0:
top_k = min(top_k, logits.size(-1))
# Remove all logits that are not in the top k
indices_to_remove = logits < torch.topk(logits, top_k, dim=-1).values[:, -1, None]
logits[indices_to_remove] = filter_value
# top_p (nucleus)
if 0 < top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone()
sorted_indices_to_remove[:, 0] = False
indices_to_remove = sorted_indices_to_remove.scatter(
dim=1, index=sorted_indices, src=sorted_indices_to_remove
)
logits[indices_to_remove] = filter_value
return logits
def generate(
self,
input_ids: torch.LongTensor,
max_new_tokens: int = 50,
temperature: float = 0.5,
top_k: int = 50,
top_p: float = 0.95,
eos_token_id: int = None,
pad_token_id: int = 0,
**kwargs
):
"""
Naive token-by-token generation loop that uses top-k/top-p filtering and optional temperature.
Args:
input_ids (torch.LongTensor): shape (batch_size, sequence_length).
max_new_tokens (int): max number of tokens to generate (beyond input_ids length).
temperature (float): sampling temperature (>=0).
top_k (int): Top-K sampling cutoff.
top_p (float): Nucleus sampling cutoff.
eos_token_id (int): If set, stop generation when this token is produced.
pad_token_id (int): If set, can be used to pad sequences. (Not fully used here.)
kwargs: Unused arguments (like num_beams) for compatibility.
Returns:
torch.LongTensor: shape (batch_size, sequence_length + generated_tokens).
"""
device = input_ids.device
print("1=====================")
print(tokenizer.decode(input_ids[0], skip_special_tokens=True))
print("1=====================")
# We'll accumulate new tokens into generated_ids
generated_ids = input_ids.clone()
for _ in range(max_new_tokens):
# Forward pass to get logits for the last token
outputs = self.forward(generated_ids)
logits = outputs.logits[:, -1, :] # shape: (batch_size, vocab_size)
# Scale logits by temperature
if temperature != 1.0:
logits = logits / temperature
# Filter logits using top-k and/or top-p
logits = self.top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
# Convert to probabilities
probabilities = F.softmax(logits, dim=-1)
# Sample from the distribution
next_token = torch.multinomial(probabilities, num_samples=1) # (batch_size, 1)
# Append next token
generated_ids = torch.cat([generated_ids, next_token], dim=1)
# If eos_token_id is set and any sample produced it, we optionally could break early
if eos_token_id is not None:
# Check if all sequences in the batch ended
# or if you want to do a more fine-grained approach
if (next_token == eos_token_id).all():
break
print("2=====================")
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
print("2=====================")
return generated_ids