File size: 9,438 Bytes
5a1cdf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutput
from .modules import STU, Attention, MLP
from .utils import nearest_power_of_two
from .layers import STULayer, AttentionLayer
from .configuration_ministu import MiniSTUConfig
from .filters import get_spectral_filters

try:
    from liger_kernel.transformers.rms_norm import LigerRMSNorm as TritonNorm
    triton_norm = True
except ImportError as e:
    print(
        f"Unable to import Triton-based RMSNorm: {e}. Falling back to PyTorch implementation."
    )
    from torch.nn import RMSNorm
    triton_norm = False
# Load the tokenizer
#from transformers import AutoModelForCausalLM, AutoTokenizer
#model_name = "Hazan-Lab/STU-426M"
#tokenizer = AutoTokenizer.from_pretrained(
#    model_name,
#    trust_remote_code=True
#)

class MiniSTU(PreTrainedModel):
    config_class = MiniSTUConfig

    def __init__(self, config) -> None:
        super(MiniSTU, self).__init__(config)
        self.n_layers = config.n_layers
        self.n = nearest_power_of_two(config.seq_len * 2 - 1, round_up=True)
        
        if isinstance(config.torch_dtype, torch.dtype):
            torch_dtype = config.torch_dtype
        else:
            torch_dtype = getattr(torch, config.torch_dtype)

        device = torch.device(config.device)

        self.phi = get_spectral_filters(
            config.seq_len,
            config.num_eigh,
            config.use_hankel_L,
            device=device,
            dtype=torch_dtype,
        )
        
        self.use_approx = config.use_approx
        self.use_hankel_L = config.use_hankel_L

        self.tok_emb = nn.Embedding(
            config.vocab_size, config.n_embd, dtype=torch_dtype, device=device
        )
        self.dropout = nn.Dropout(config.dropout)

        self.layers = nn.ModuleList()
        for layer_idx in range(self.n_layers):
            if layer_idx % 2 == 0:
                self.layers.append(STULayer(config, self.phi, self.n))
            else:
                self.layers.append(
                    AttentionLayer(config)
                    if config.use_attn
                    else STULayer(config, self.phi, self.n)
                )

        self.norm = TritonNorm(config.n_embd) if triton_norm else RMSNorm(config.n_embd)

        self.lm_head = nn.Linear(
            config.n_embd, config.vocab_size, bias=config.bias, dtype=torch_dtype, device=device
        )
        self.tok_emb.weight = self.lm_head.weight

        self.std = (config.n_embd) ** -0.5
        self.apply(self._init_weights)
        print("Model Parameter Count: %.2fM\n" % (self._get_num_params() / 1e6,))

    def forward(
        self,
        input_ids: torch.Tensor,
        labels: torch.Tensor = None,
        **kwargs
    ) -> CausalLMOutput:
        # Compute embeddings
        tok_emb = self.tok_emb(input_ids)
        x = self.dropout(tok_emb)

        # Pass through layers
        for layer in self.layers:
            x = layer(x)

        # Normalize and project to vocabulary
        x = self.norm(x)
        logits = self.lm_head(x)

        loss = None
        if labels is not None:
            # Shift so that tokens predict the next token
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(
                shift_logits.view(-1, shift_logits.size(-1)),
                shift_labels.view(-1)
            )

        return CausalLMOutput(
            loss=loss,
            logits=logits,
        )

    def _get_num_params(self):
        n_params = sum(p.numel() for p in self.parameters())
        if hasattr(self, "pos_emb") and self.pos_emb is not None:
            n_params -= self.pos_emb.weight.numel()
        if self.tok_emb.weight is not self.lm_head.weight:
            n_params -= self.tok_emb.weight.numel()
        return n_params

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            if hasattr(module, "SCALE_INIT"):
                self.std *= (2 * self.n_layers) ** -0.5
            torch.nn.init.normal_(module.weight, mean=0.0, std=self.std)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=self.std)
        elif isinstance(module, STU):
            if self.use_approx:
                torch.nn.init.xavier_normal_(module.M_inputs)
                torch.nn.init.xavier_normal_(module.M_filters)
            else:
                torch.nn.init.xavier_normal_(module.M_phi_plus)
                if not self.use_hankel_L:
                    torch.nn.init.xavier_normal_(module.M_phi_minus)
        elif isinstance(module, Attention):
            torch.nn.init.xavier_normal_(module.c_attn.weight)
            torch.nn.init.xavier_normal_(module.c_proj.weight)
            if module.c_attn.bias is not None:
                torch.nn.init.zeros_(module.c_attn.bias)
            if module.c_proj.bias is not None:
                torch.nn.init.zeros_(module.c_proj.bias)
    @staticmethod
    def top_k_top_p_filtering(
        logits: torch.Tensor,
        top_k: int = 50,
        top_p: float = 0.95,
        filter_value: float = float("-inf"),
    ):
        """
        Filters a distribution of logits using top-k and/or nucleus (top-p) filtering.
        """
        # top_k
        if top_k > 0:
            top_k = min(top_k, logits.size(-1))
            # Remove all logits that are not in the top k
            indices_to_remove = logits < torch.topk(logits, top_k, dim=-1).values[:, -1, None]
            logits[indices_to_remove] = filter_value

        # top_p (nucleus)
        if 0 < top_p < 1.0:
            sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
            cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)

            # Remove tokens with cumulative probability above the threshold
            sorted_indices_to_remove = cumulative_probs > top_p
            # Shift the indices to the right to keep also the first token above the threshold
            sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone()
            sorted_indices_to_remove[:, 0] = False

            indices_to_remove = sorted_indices_to_remove.scatter(
                dim=1, index=sorted_indices, src=sorted_indices_to_remove
            )
            logits[indices_to_remove] = filter_value

        return logits

    def generate(
        self,
        input_ids: torch.LongTensor,
        max_new_tokens: int = 50,
        temperature: float = 0.5,
        top_k: int = 50,
        top_p: float = 0.95,
        eos_token_id: int = None,
        pad_token_id: int = 0,
        **kwargs
    ):
        """
        Naive token-by-token generation loop that uses top-k/top-p filtering and optional temperature.

        Args:
            input_ids (torch.LongTensor): shape (batch_size, sequence_length).
            max_new_tokens (int): max number of tokens to generate (beyond input_ids length).
            temperature (float): sampling temperature (>=0).
            top_k (int): Top-K sampling cutoff.
            top_p (float): Nucleus sampling cutoff.
            eos_token_id (int): If set, stop generation when this token is produced.
            pad_token_id (int): If set, can be used to pad sequences. (Not fully used here.)
            kwargs: Unused arguments (like num_beams) for compatibility.

        Returns:
            torch.LongTensor: shape (batch_size, sequence_length + generated_tokens).
        """
        device = input_ids.device
        #print("1=====================")
        #print(tokenizer.decode(input_ids[0], skip_special_tokens=True))
        #print("1=====================")

        # We'll accumulate new tokens into generated_ids
        generated_ids = input_ids.clone()

        for _ in range(max_new_tokens):
            # Forward pass to get logits for the last token
            outputs = self.forward(generated_ids)
            logits = outputs.logits[:, -1, :]  # shape: (batch_size, vocab_size)

            # Scale logits by temperature
            if temperature != 1.0:
                logits = logits / temperature

            # Filter logits using top-k and/or top-p
            logits = self.top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)

            # Convert to probabilities
            probabilities = F.softmax(logits, dim=-1)

            # Sample from the distribution
            next_token = torch.multinomial(probabilities, num_samples=1)  # (batch_size, 1)

            # Append next token
            generated_ids = torch.cat([generated_ids, next_token], dim=1)

            # If eos_token_id is set and any sample produced it, we optionally could break early
            if eos_token_id is not None:
                # Check if all sequences in the batch ended
                # or if you want to do a more fine-grained approach
                if (next_token == eos_token_id).all():
                    break
        #print("2=====================")
        #print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
        #print("2=====================")
        return generated_ids