File size: 8,914 Bytes
9991887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d7d25c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from typing import List, Optional, Tuple
import torch

from mamba_ssm.ops.triton.ssd_combined import _mamba_chunk_scan_combined_fwd, _mamba_chunk_scan_combined_bwd


@torch.compile(options={"triton.cudagraphs": True}, fullgraph=True)
def _compiled_mamba_chunk_scan_combined_fwd(x, dt, A, B, C, chunk_size, D=None, z=None, dt_bias=None, initial_states=None, seq_idx=None, cu_seqlens=None, dt_softplus=False, dt_limit=None):
    return _mamba_chunk_scan_combined_fwd(x, dt, A, B, C, chunk_size, D=D, z=z, dt_bias=dt_bias, initial_states=initial_states, seq_idx=seq_idx, cu_seqlens=cu_seqlens, dt_softplus=dt_softplus, dt_limit=dt_limit)

@torch.compile(options={"triton.cudagraphs": True}, fullgraph=True)
def _compiled_mamba_chunk_scan_combined_bwd(dout, x, dt, A, B, C, out, chunk_size, D=None, z=None, dt_bias=None, initial_states=None, dfinal_states=None, seq_idx=None, dt_softplus=False, dt_limit=None):
    return _mamba_chunk_scan_combined_bwd(dout, x, dt, A, B, C, out, chunk_size, D=D, z=z, dt_bias=dt_bias, initial_states=initial_states, dfinal_states=dfinal_states, seq_idx=seq_idx, dt_softplus=dt_softplus, dt_limit=dt_limit)


@torch.library.custom_op(
    "mamba_ssm::ssm_chunk_scan_combined_fwd",
    mutates_args=(),
    device_types="cuda",
)
def ssm_chunk_scan_combined_fwd(
    x: torch.Tensor, 
    dt: torch.Tensor, 
    A: torch.Tensor, 
    B: torch.Tensor, 
    C: torch.Tensor, 
    chunk_size: int, 
    D: Optional[torch.Tensor] = None, 
    z: Optional[torch.Tensor] = None,  
    dt_bias: Optional[torch.Tensor] = None, 
    initial_states: Optional[torch.Tensor] = None,  
    seq_idx: Optional[torch.Tensor] = None,
    cu_seqlens: Optional[torch.Tensor] = None,
    dt_softplus: bool = False,
    dt_limit: Optional[List[float]] = None
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
    out, out_x, dt_out, dA_cumsum, states, final_states, *rest = _mamba_chunk_scan_combined_fwd(x, dt, A, B, C, chunk_size, D=D, z=z, dt_bias=dt_bias, initial_states=initial_states, seq_idx=seq_idx, cu_seqlens=cu_seqlens, dt_softplus=dt_softplus, dt_limit=dt_limit)

    return out, out_x if out_x is not None else out.new_empty(0), rest[0] if cu_seqlens is not None else out.new_empty(0)

@ssm_chunk_scan_combined_fwd.register_fake
def _ssm_chunk_scan_combined_fwd_fake(
    x: torch.Tensor,
    dt: torch.Tensor,
    A: torch.Tensor,
    B: torch.Tensor,
    C: torch.Tensor,
    chunk_size: int,
    D: Optional[torch.Tensor] = None,
    z: Optional[torch.Tensor] = None,
    dt_bias: Optional[torch.Tensor] = None,
    initial_states: Optional[torch.Tensor] = None,
    seq_idx: Optional[torch.Tensor] = None,
    cu_seqlens: Optional[torch.Tensor] = None,
    dt_softplus: bool = False,
    dt_limit: Optional[List[float]] = None
):
    _, _, n_heads, head_dim = x.shape
    return (
        torch.empty_like(x), 
        torch.empty_like(x) if z is not None else None, 
        x.new_empty((cu_seqlens.size(0)-1, n_heads, head_dim, B.size(0))) if cu_seqlens is not None else None,
    )

@torch.library.custom_op(
    "mamba_ssm::ssm_chunk_scan_combined_bwd", 
    mutates_args=(),
    device_types="cuda",
)
def ssm_chunk_scan_combined_bwd(
    dout: torch.Tensor,
    x: torch.Tensor, 
    dt: torch.Tensor, 
    A: torch.Tensor, 
    B: torch.Tensor, 
    C: torch.Tensor,
    out: torch.Tensor,
    chunk_size: int, 
    D: Optional[torch.Tensor] = None,
    z: Optional[torch.Tensor] = None,
    dt_bias: Optional[torch.Tensor] = None,
    initial_states: Optional[torch.Tensor] = None,
    seq_idx: Optional[torch.Tensor] = None,
    dt_softplus: bool = False,
    dt_limit: Optional[List[float]] = None
)-> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
    dx, ddt, dA, dB, dC, dD, dz, ddt_bias, dinitial_states = _mamba_chunk_scan_combined_bwd(dout, x, dt, A, B, C, out, chunk_size, D=D, z=z, dt_bias=dt_bias, initial_states=initial_states, dfinal_states=None, seq_idx=seq_idx, dt_softplus=dt_softplus, dt_limit=dt_limit)
    return (
        dx,
        ddt,
        dA,
        dB,
        dC,
        dD if dD is not None else dx.new_empty(0),
        dz if dz is not None else dx.new_empty(0),
        ddt_bias if ddt_bias is not None else dx.new_empty(0),
        dinitial_states if dinitial_states is not None else dx.new_empty(0)
    )

@ssm_chunk_scan_combined_bwd.register_fake
def _ssm_chunk_scan_combined_bwd_fake(
    dout: torch.Tensor,
    x: torch.Tensor,
    dt: torch.Tensor,
    A: torch.Tensor,
    B: torch.Tensor,
    C: torch.Tensor,
    out: torch.Tensor,
    chunk_size: int,
    D: Optional[torch.Tensor] = None,
    z: Optional[torch.Tensor] = None,
    dt_bias: Optional[torch.Tensor] = None,
    initial_states: Optional[torch.Tensor] = None,
    seq_idx: Optional[torch.Tensor] = None,
    dt_softplus: bool = False,
    dt_limit: Optional[List[float]] = None
):
    return (
        torch.empty_like(x),
        torch.empty_like(dt),
        torch.empty_like(A),
        torch.empty_like(B),
        torch.empty_like(C),
        torch.empty_like(D) if D is not None else None,
        torch.empty_like(z) if z is not None else None,
        torch.empty_like(dt_bias) if dt_bias is not None else None,
        torch.empty_like(initial_states) if initial_states is not None else None,
    )


def ssm_chunk_scan_combined_setup_context(ctx, inputs, output):
    x, dt, A, B, C, chunk_size, D, z, dt_bias, initial_states, seq_idx, cu_seqlens, dt_softplus, dt_limit = inputs
    out, out_x, state_varlen = output

    ctx.save_for_backward(out if z is None else out_x, x, dt, A, B, C, D, z, dt_bias, initial_states, seq_idx)
    ctx.dt_softplus = dt_softplus
    ctx.chunk_size = chunk_size
    ctx.dt_limit = dt_limit

def ssm_chunk_scan_combined_bridge(ctx, dout, dout_x, dout_state_varlen):
    out, x, dt, A, B, C, D, z, dt_bias, initial_states, seq_idx = ctx.saved_tensors

    dx, ddt, dA, dB, dC, dD, dz, ddt_bias, dinitial_states = ssm_chunk_scan_combined_bwd(dout, x, dt, A, B, C, out, ctx.chunk_size, D=D, z=z, dt_bias=dt_bias, initial_states=initial_states, seq_idx=seq_idx, dt_softplus=ctx.dt_softplus, dt_limit=ctx.dt_limit)

    return (
        dx,
        ddt,
        dA,
        dB,
        dC, 
        None,
        dD if D is not None else None, 
        dz if z is not None else None,
        ddt_bias if dt_bias is not None else None, 
        dinitial_states if initial_states is not None else None, 
        None,
        None,
        None,
        None,
    )

# Register custom autograd function
torch.library.register_autograd(
    "mamba_ssm::ssm_chunk_scan_combined_fwd",
    ssm_chunk_scan_combined_bridge,
    setup_context=ssm_chunk_scan_combined_setup_context,
)

def mamba_chunk_scan_combined(x, dt, A, B, C, chunk_size, D=None, z=None, dt_bias=None, initial_states=None, seq_idx=None, cu_seqlens=None, dt_softplus=False, dt_limit=(0.0, float("inf"))):
    """
    Argument:
        x: (batch, seqlen, nheads, headdim)
        dt: (batch, seqlen, nheads)
        A: (nheads)
        B: (batch, seqlen, ngroups, dstate)
        C: (batch, seqlen, ngroups, dstate)
        chunk_size: int
        D: (nheads, headdim) or (nheads,)
        z: (batch, seqlen, nheads, headdim)
        dt_bias: (nheads,)
        initial_states: (batch, nheads, headdim, dstate)
        seq_idx: (batch, seqlen)
        cu_seqlens: (num_sequences + 1) or None
        dt_softplus: Whether to apply softplus to dt
    Return:
        out: (batch, seqlen, nheads, headdim)
    """
    
    out, _, varlen_states  = ssm_chunk_scan_combined_fwd(x, dt, A, B, C, chunk_size, D=D, z=z, dt_bias=dt_bias, initial_states=initial_states, seq_idx=seq_idx, cu_seqlens=cu_seqlens, dt_softplus=dt_softplus, dt_limit=dt_limit)
    if cu_seqlens is not None:
        return out, varlen_states
    return out

if __name__ == "__main__":
    from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined as mamba_chunk_scan_combined_ref

    torch.manual_seed(0)
    torch.cuda.manual_seed(0)

    x = torch.randn(2, 3, 4, 5).cuda()
    dt = torch.randn(2, 3, 4).cuda()
    A = torch.randn(4).cuda()
    B = torch.randn(2, 3, 4, 5).cuda()
    C = torch.randn(2, 3, 4, 5).cuda()
    chunk_size = 2
    D = torch.randn(4, 5).cuda()
    z = torch.randn(2, 3, 4, 5).cuda()
    dt_bias = torch.randn(4).cuda()

    out = mamba_chunk_scan_combined(x, dt, A, B, C, chunk_size, D=D, z=z, dt_bias=dt_bias)

    print(out.min(), out.max(), out.mean(), out.std())

    compiled_mamba_chunk_scan_combined = torch.compile(mamba_chunk_scan_combined)
    out = compiled_mamba_chunk_scan_combined(x, dt, A, B, C, chunk_size, D=D, z=z, dt_bias=dt_bias)

    print(out.min(), out.max(), out.mean(), out.std())

    out_ref = mamba_chunk_scan_combined_ref(x, dt, A, B, C, chunk_size, D=D, z=z, dt_bias=dt_bias)

    print(out_ref.min(), out_ref.max(), out_ref.mean(), out_ref.std())