--- license: mit language: - en metrics: - accuracy - f1 - recall - precision library_name: transformers pipeline_tag: text-generation --- # FLAN-T5 small-GeoNames This model is a fine-tuned version of [flan-t5-small](https://huggingface.co/google/flan-t5-small) on the GeoNames dataset. ## Model description The model is trained to classify terms into one of 660 category classes related to geographical locations. The model also works well as part of a Retrieval-and-Generation (RAG) pipeline by leveraging an external knowledge source, specifically [GeoNames Semantic Primes](https://huggingface.co/datasets/HannaAbiAkl/geonames-semantic-primes). ## Intended uses and limitations This model is intended to be used to generate a type (class) for an input term. # Training and evaluation data The training and evaluation data can be found [here](https://github.com/HamedBabaei/LLMs4OL-Challenge-ISWC2024/tree/main/TaskA-Term%20Typing/SubTask%20A.2%20(FS)%20-%20GeoNames). The train size is 8078865. The test size is 702510. ## Example Here's an example of the model capabilities: - **input:** - *Lexical Term L:* Pic de Font Blanca - **output:** - *Type:* peak - **input:** - *Lexical Term L:* Roc Mele - **output:** - *Type:* mountain - **input:** - *Lexical Term L:* Estany de les Abelletes - **output:** - *Type:* lake ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6223 | 1.0 | 1000 | 1.5223 | | 2.1430 | 2.0 | 2000 | 1.3764 | | 1.9100 | 3.0 | 3000 | 1.2825 | | 1.7642 | 4.0 | 4000 | 1.2102 | | 1.6607 | 5.0 | 5000 | 1.1488 |