--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer datasets: - common_voice_16_0 metrics: - wer model-index: - name: w2v-bert-2.0-mn-colab-CV16.0 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_16_0 type: common_voice_16_0 config: mn split: test args: mn metrics: - name: Wer type: wer value: 0.32368936262780074 --- # w2v-bert-2.0-mn-colab-CV16.0 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5152 - Wer: 0.3237 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 1.8121 | 2.3715 | 300 | 0.6300 | 0.5082 | | 0.3404 | 4.7431 | 600 | 0.5988 | 0.4459 | | 0.1726 | 7.1146 | 900 | 0.4940 | 0.3769 | | 0.0708 | 9.4862 | 1200 | 0.5152 | 0.3237 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu118 - Datasets 3.1.0 - Tokenizers 0.20.3