Upload pipeline.py
Browse files- pipeline.py +489 -0
pipeline.py
ADDED
|
@@ -0,0 +1,489 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 Marigold authors, PRS ETH Zurich. All rights reserved.
|
| 2 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
# --------------------------------------------------------------------------
|
| 16 |
+
# More information and citation instructions are available on the
|
| 17 |
+
# Marigold project website: https://marigoldmonodepth.github.io
|
| 18 |
+
# --------------------------------------------------------------------------
|
| 19 |
+
|
| 20 |
+
# @GonzaloMartinGarcia
|
| 21 |
+
# Inference Pipeline for End-to-End Marigold and Stable Diffusion Surface Normal Estimators
|
| 22 |
+
# ----------------------------------------------------------------------------------
|
| 23 |
+
# A streamlined version of the official MarigoldDepthPipeline from diffusers:
|
| 24 |
+
# https://github.com/huggingface/diffusers/blob/a98a839de75f1ad82d8d200c3bc2e4ff89929081/src/diffusers/pipelines/marigold/pipeline_marigold_depth.py#L96
|
| 25 |
+
#
|
| 26 |
+
# This implementation is meant for use with the diffusers custom_pipeline feature.
|
| 27 |
+
# Modifications from the original code are marked with '# add' comments.
|
| 28 |
+
|
| 29 |
+
from dataclasses import dataclass
|
| 30 |
+
from typing import List, Optional, Tuple, Union
|
| 31 |
+
|
| 32 |
+
import numpy as np
|
| 33 |
+
import torch
|
| 34 |
+
from PIL import Image
|
| 35 |
+
from tqdm.auto import tqdm
|
| 36 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
| 37 |
+
|
| 38 |
+
from diffusers.image_processor import PipelineImageInput
|
| 39 |
+
from diffusers.models import (
|
| 40 |
+
AutoencoderKL,
|
| 41 |
+
UNet2DConditionModel,
|
| 42 |
+
)
|
| 43 |
+
from diffusers.schedulers import (
|
| 44 |
+
DDIMScheduler,
|
| 45 |
+
)
|
| 46 |
+
from diffusers.utils import (
|
| 47 |
+
BaseOutput,
|
| 48 |
+
logging,
|
| 49 |
+
)
|
| 50 |
+
from diffusers import DiffusionPipeline
|
| 51 |
+
from diffusers.pipelines.marigold.marigold_image_processing import MarigoldImageProcessor
|
| 52 |
+
|
| 53 |
+
# add
|
| 54 |
+
def zeros_tensor(
|
| 55 |
+
shape: Union[Tuple, List],
|
| 56 |
+
device: Optional["torch.device"] = None,
|
| 57 |
+
dtype: Optional["torch.dtype"] = None,
|
| 58 |
+
layout: Optional["torch.layout"] = None,
|
| 59 |
+
):
|
| 60 |
+
"""
|
| 61 |
+
A helper function to create tensors of zeros on the desired `device`.
|
| 62 |
+
Mirrors randn_tensor from diffusers.utils.torch_utils.
|
| 63 |
+
"""
|
| 64 |
+
layout = layout or torch.strided
|
| 65 |
+
device = device or torch.device("cpu")
|
| 66 |
+
latents = torch.zeros(list(shape), dtype=dtype, layout=layout).to(device)
|
| 67 |
+
return latents
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
@dataclass
|
| 74 |
+
class E2EMarigoldNormalsOutput(BaseOutput):
|
| 75 |
+
"""
|
| 76 |
+
Output class for Marigold monocular normals prediction pipeline.
|
| 77 |
+
|
| 78 |
+
Args:
|
| 79 |
+
prediction (`np.ndarray`, `torch.Tensor`):
|
| 80 |
+
Predicted normals with values in the range [-1, 1]. The shape is always $numimages \times 3 \times height
|
| 81 |
+
\times width$, regardless of whether the images were passed as a 4D array or a list.
|
| 82 |
+
latent (`None`, `torch.Tensor`):
|
| 83 |
+
Latent features corresponding to the predictions, compatible with the `latents` argument of the pipeline.
|
| 84 |
+
The shape is $numimages * numensemble \times 4 \times latentheight \times latentwidth$.
|
| 85 |
+
"""
|
| 86 |
+
|
| 87 |
+
prediction: Union[np.ndarray, torch.Tensor]
|
| 88 |
+
latent: Union[None, torch.Tensor]
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
class E2EMarigoldNormalsPipeline(DiffusionPipeline):
|
| 92 |
+
"""
|
| 93 |
+
# add
|
| 94 |
+
Pipeline for monocular normals estimation using the E2E FT Marigold and SD method: https://gonzalomartingarcia.github.io/diffusion-e2e-ft/
|
| 95 |
+
Implementation is built upon Marigold: https://marigoldmonodepth.github.io
|
| 96 |
+
|
| 97 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
| 98 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
| 99 |
+
|
| 100 |
+
Args:
|
| 101 |
+
unet (`UNet2DConditionModel`):
|
| 102 |
+
Conditional U-Net to denoise the normals latent, conditioned on image latent.
|
| 103 |
+
vae (`AutoencoderKL`):
|
| 104 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images and predictions to and from latent
|
| 105 |
+
representations.
|
| 106 |
+
scheduler (`DDIMScheduler` or `LCMScheduler`):
|
| 107 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
|
| 108 |
+
text_encoder (`CLIPTextModel`):
|
| 109 |
+
Text-encoder, for empty text embedding.
|
| 110 |
+
tokenizer (`CLIPTokenizer`):
|
| 111 |
+
CLIP tokenizer.
|
| 112 |
+
default_processing_resolution (`int`, *optional*):
|
| 113 |
+
The recommended value of the `processing_resolution` parameter of the pipeline. This value must be set in
|
| 114 |
+
the model config. When the pipeline is called without explicitly setting `processing_resolution`, the
|
| 115 |
+
default value is used. This is required to ensure reasonable results with various model flavors trained
|
| 116 |
+
with varying optimal processing resolution values.
|
| 117 |
+
"""
|
| 118 |
+
|
| 119 |
+
model_cpu_offload_seq = "text_encoder->unet->vae"
|
| 120 |
+
|
| 121 |
+
def __init__(
|
| 122 |
+
self,
|
| 123 |
+
unet: UNet2DConditionModel,
|
| 124 |
+
vae: AutoencoderKL,
|
| 125 |
+
scheduler: Union[DDIMScheduler],
|
| 126 |
+
text_encoder: CLIPTextModel,
|
| 127 |
+
tokenizer: CLIPTokenizer,
|
| 128 |
+
default_processing_resolution: Optional[int] = 768, # add
|
| 129 |
+
):
|
| 130 |
+
super().__init__()
|
| 131 |
+
|
| 132 |
+
self.register_modules(
|
| 133 |
+
unet=unet,
|
| 134 |
+
vae=vae,
|
| 135 |
+
scheduler=scheduler,
|
| 136 |
+
text_encoder=text_encoder,
|
| 137 |
+
tokenizer=tokenizer,
|
| 138 |
+
)
|
| 139 |
+
self.register_to_config(
|
| 140 |
+
default_processing_resolution=default_processing_resolution,
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 144 |
+
self.default_processing_resolution = default_processing_resolution
|
| 145 |
+
self.empty_text_embedding = None
|
| 146 |
+
|
| 147 |
+
self.image_processor = MarigoldImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
| 148 |
+
|
| 149 |
+
def check_inputs(
|
| 150 |
+
self,
|
| 151 |
+
image: PipelineImageInput,
|
| 152 |
+
processing_resolution: int,
|
| 153 |
+
resample_method_input: str,
|
| 154 |
+
resample_method_output: str,
|
| 155 |
+
batch_size: int,
|
| 156 |
+
output_type: str,
|
| 157 |
+
) -> int:
|
| 158 |
+
if processing_resolution is None:
|
| 159 |
+
raise ValueError(
|
| 160 |
+
"`processing_resolution` is not specified and could not be resolved from the model config."
|
| 161 |
+
)
|
| 162 |
+
if processing_resolution < 0:
|
| 163 |
+
raise ValueError(
|
| 164 |
+
"`processing_resolution` must be non-negative: 0 for native resolution, or any positive value for "
|
| 165 |
+
"downsampled processing."
|
| 166 |
+
)
|
| 167 |
+
if processing_resolution % self.vae_scale_factor != 0:
|
| 168 |
+
raise ValueError(f"`processing_resolution` must be a multiple of {self.vae_scale_factor}.")
|
| 169 |
+
if resample_method_input not in ("nearest", "nearest-exact", "bilinear", "bicubic", "area"):
|
| 170 |
+
raise ValueError(
|
| 171 |
+
"`resample_method_input` takes string values compatible with PIL library: "
|
| 172 |
+
"nearest, nearest-exact, bilinear, bicubic, area."
|
| 173 |
+
)
|
| 174 |
+
if resample_method_output not in ("nearest", "nearest-exact", "bilinear", "bicubic", "area"):
|
| 175 |
+
raise ValueError(
|
| 176 |
+
"`resample_method_output` takes string values compatible with PIL library: "
|
| 177 |
+
"nearest, nearest-exact, bilinear, bicubic, area."
|
| 178 |
+
)
|
| 179 |
+
if batch_size < 1:
|
| 180 |
+
raise ValueError("`batch_size` must be positive.")
|
| 181 |
+
if output_type not in ["pt", "np"]:
|
| 182 |
+
raise ValueError("`output_type` must be one of `pt` or `np`.")
|
| 183 |
+
|
| 184 |
+
# image checks
|
| 185 |
+
num_images = 0
|
| 186 |
+
W, H = None, None
|
| 187 |
+
if not isinstance(image, list):
|
| 188 |
+
image = [image]
|
| 189 |
+
for i, img in enumerate(image):
|
| 190 |
+
if isinstance(img, np.ndarray) or torch.is_tensor(img):
|
| 191 |
+
if img.ndim not in (2, 3, 4):
|
| 192 |
+
raise ValueError(f"`image[{i}]` has unsupported dimensions or shape: {img.shape}.")
|
| 193 |
+
H_i, W_i = img.shape[-2:]
|
| 194 |
+
N_i = 1
|
| 195 |
+
if img.ndim == 4:
|
| 196 |
+
N_i = img.shape[0]
|
| 197 |
+
elif isinstance(img, Image.Image):
|
| 198 |
+
W_i, H_i = img.size
|
| 199 |
+
N_i = 1
|
| 200 |
+
else:
|
| 201 |
+
raise ValueError(f"Unsupported `image[{i}]` type: {type(img)}.")
|
| 202 |
+
if W is None:
|
| 203 |
+
W, H = W_i, H_i
|
| 204 |
+
elif (W, H) != (W_i, H_i):
|
| 205 |
+
raise ValueError(
|
| 206 |
+
f"Input `image[{i}]` has incompatible dimensions {(W_i, H_i)} with the previous images {(W, H)}"
|
| 207 |
+
)
|
| 208 |
+
num_images += N_i
|
| 209 |
+
|
| 210 |
+
if processing_resolution > 0:
|
| 211 |
+
max_orig = max(H, W)
|
| 212 |
+
new_H = H * processing_resolution // max_orig
|
| 213 |
+
new_W = W * processing_resolution // max_orig
|
| 214 |
+
if new_H == 0 or new_W == 0:
|
| 215 |
+
raise ValueError(f"Extreme aspect ratio of the input image: [{W} x {H}]")
|
| 216 |
+
W, H = new_W, new_H
|
| 217 |
+
w = (W + self.vae_scale_factor - 1) // self.vae_scale_factor
|
| 218 |
+
h = (H + self.vae_scale_factor - 1) // self.vae_scale_factor
|
| 219 |
+
shape_expected = (num_images, self.vae.config.latent_channels, h, w)
|
| 220 |
+
|
| 221 |
+
return num_images
|
| 222 |
+
|
| 223 |
+
def progress_bar(self, iterable=None, total=None, desc=None, leave=True):
|
| 224 |
+
if not hasattr(self, "_progress_bar_config"):
|
| 225 |
+
self._progress_bar_config = {}
|
| 226 |
+
elif not isinstance(self._progress_bar_config, dict):
|
| 227 |
+
raise ValueError(
|
| 228 |
+
f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
progress_bar_config = dict(**self._progress_bar_config)
|
| 232 |
+
progress_bar_config["desc"] = progress_bar_config.get("desc", desc)
|
| 233 |
+
progress_bar_config["leave"] = progress_bar_config.get("leave", leave)
|
| 234 |
+
if iterable is not None:
|
| 235 |
+
return tqdm(iterable, **progress_bar_config)
|
| 236 |
+
elif total is not None:
|
| 237 |
+
return tqdm(total=total, **progress_bar_config)
|
| 238 |
+
else:
|
| 239 |
+
raise ValueError("Either `total` or `iterable` has to be defined.")
|
| 240 |
+
|
| 241 |
+
@torch.no_grad()
|
| 242 |
+
def __call__(
|
| 243 |
+
self,
|
| 244 |
+
image: PipelineImageInput,
|
| 245 |
+
processing_resolution: Optional[int] = None,
|
| 246 |
+
match_input_resolution: bool = True,
|
| 247 |
+
resample_method_input: str = "bilinear",
|
| 248 |
+
resample_method_output: str = "bilinear",
|
| 249 |
+
batch_size: int = 1,
|
| 250 |
+
output_type: str = "np",
|
| 251 |
+
output_latent: bool = False,
|
| 252 |
+
return_dict: bool = True,
|
| 253 |
+
):
|
| 254 |
+
"""
|
| 255 |
+
Function invoked when calling the pipeline.
|
| 256 |
+
|
| 257 |
+
Args:
|
| 258 |
+
image (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`),
|
| 259 |
+
`List[torch.Tensor]`: An input image or images used as an input for the normals estimation task. For
|
| 260 |
+
arrays and tensors, the expected value range is between `[0, 1]`. Passing a batch of images is possible
|
| 261 |
+
by providing a four-dimensional array or a tensor. Additionally, a list of images of two- or
|
| 262 |
+
three-dimensional arrays or tensors can be passed. In the latter case, all list elements must have the
|
| 263 |
+
same width and height.
|
| 264 |
+
processing_resolution (`int`, *optional*, defaults to `None`):
|
| 265 |
+
Effective processing resolution. When set to `0`, matches the larger input image dimension. This
|
| 266 |
+
produces crisper predictions, but may also lead to the overall loss of global context. The default
|
| 267 |
+
value `None` resolves to the optimal value from the model config.
|
| 268 |
+
match_input_resolution (`bool`, *optional*, defaults to `True`):
|
| 269 |
+
When enabled, the output prediction is resized to match the input dimensions. When disabled, the longer
|
| 270 |
+
side of the output will equal to `processing_resolution`.
|
| 271 |
+
resample_method_input (`str`, *optional*, defaults to `"bilinear"`):
|
| 272 |
+
Resampling method used to resize input images to `processing_resolution`. The accepted values are:
|
| 273 |
+
`"nearest"`, `"nearest-exact"`, `"bilinear"`, `"bicubic"`, or `"area"`.
|
| 274 |
+
resample_method_output (`str`, *optional*, defaults to `"bilinear"`):
|
| 275 |
+
Resampling method used to resize output predictions to match the input resolution. The accepted values
|
| 276 |
+
are `"nearest"`, `"nearest-exact"`, `"bilinear"`, `"bicubic"`, or `"area"`.
|
| 277 |
+
batch_size (`int`, *optional*, defaults to `1`):
|
| 278 |
+
Batch size; only matters when passing a tensor of images.
|
| 279 |
+
output_type (`str`, *optional*, defaults to `"np"`):
|
| 280 |
+
Preferred format of the output's `prediction`. The accepted values are: `"np"` (numpy array) or `"pt"` (torch tensor).
|
| 281 |
+
output_latent (`bool`, *optional*, defaults to `False`):
|
| 282 |
+
When enabled, the output's `latent` field contains the latent codes corresponding to the predictions
|
| 283 |
+
within the ensemble. These codes can be saved, modified, and used for subsequent calls with the
|
| 284 |
+
`latents` argument.
|
| 285 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 286 |
+
Whether or not to return a [`~pipelines.marigold.MarigoldDepthOutput`] instead of a plain tuple.
|
| 287 |
+
|
| 288 |
+
# add
|
| 289 |
+
E2E FT models are deterministic single step models involving no ensembling, i.e. E=1.
|
| 290 |
+
"""
|
| 291 |
+
|
| 292 |
+
# 0. Resolving variables.
|
| 293 |
+
device = self._execution_device
|
| 294 |
+
dtype = self.dtype
|
| 295 |
+
|
| 296 |
+
# Model-specific optimal default values leading to fast and reasonable results.
|
| 297 |
+
if processing_resolution is None:
|
| 298 |
+
processing_resolution = self.default_processing_resolution
|
| 299 |
+
|
| 300 |
+
# 1. Check inputs.
|
| 301 |
+
num_images = self.check_inputs(
|
| 302 |
+
image,
|
| 303 |
+
processing_resolution,
|
| 304 |
+
resample_method_input,
|
| 305 |
+
resample_method_output,
|
| 306 |
+
batch_size,
|
| 307 |
+
output_type,
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
# 2. Prepare empty text conditioning.
|
| 311 |
+
# Model invocation: self.tokenizer, self.text_encoder.
|
| 312 |
+
if self.empty_text_embedding is None:
|
| 313 |
+
prompt = ""
|
| 314 |
+
text_inputs = self.tokenizer(
|
| 315 |
+
prompt,
|
| 316 |
+
padding="do_not_pad",
|
| 317 |
+
max_length=self.tokenizer.model_max_length,
|
| 318 |
+
truncation=True,
|
| 319 |
+
return_tensors="pt",
|
| 320 |
+
)
|
| 321 |
+
text_input_ids = text_inputs.input_ids.to(device)
|
| 322 |
+
self.empty_text_embedding = self.text_encoder(text_input_ids)[0] # [1,2,1024]
|
| 323 |
+
|
| 324 |
+
# 3. Preprocess input images. This function loads input image or images of compatible dimensions `(H, W)`,
|
| 325 |
+
# optionally downsamples them to the `processing_resolution` `(PH, PW)`, where
|
| 326 |
+
# `max(PH, PW) == processing_resolution`, and pads the dimensions to `(PPH, PPW)` such that these values are
|
| 327 |
+
# divisible by the latent space downscaling factor (typically 8 in Stable Diffusion). The default value `None`
|
| 328 |
+
# of `processing_resolution` resolves to the optimal value from the model config. It is a recommended mode of
|
| 329 |
+
# operation and leads to the most reasonable results. Using the native image resolution or any other processing
|
| 330 |
+
# resolution can lead to loss of either fine details or global context in the output predictions.
|
| 331 |
+
image, padding, original_resolution = self.image_processor.preprocess(
|
| 332 |
+
image, processing_resolution, resample_method_input, device, dtype
|
| 333 |
+
) # [N,3,PPH,PPW]
|
| 334 |
+
|
| 335 |
+
# 4. Encode input image into latent space. At this step, each of the `N` input images is represented with `E`
|
| 336 |
+
# ensemble members. Each ensemble member is an independent diffused prediction, just initialized independently.
|
| 337 |
+
# Latents of each such predictions across all input images and all ensemble members are represented in the
|
| 338 |
+
# `pred_latent` variable. The variable `image_latent` is of the same shape: it contains each input image encoded
|
| 339 |
+
# into latent space and replicated `E` times. Encoding into latent space happens in batches of size `batch_size`.
|
| 340 |
+
# Model invocation: self.vae.encoder.
|
| 341 |
+
image_latent, pred_latent = self.prepare_latents(
|
| 342 |
+
image, batch_size
|
| 343 |
+
) # [N*E,4,h,w], [N*E,4,h,w]
|
| 344 |
+
|
| 345 |
+
del image
|
| 346 |
+
|
| 347 |
+
batch_empty_text_embedding = self.empty_text_embedding.to(device=device, dtype=dtype).repeat(
|
| 348 |
+
batch_size, 1, 1
|
| 349 |
+
) # [B,1024,2]
|
| 350 |
+
|
| 351 |
+
# 5. Process the denoising loop. All `N * E` latents are processed sequentially in batches of size `batch_size`.
|
| 352 |
+
# The unet model takes concatenated latent spaces of the input image and the predicted modality as an input, and
|
| 353 |
+
# outputs noise for the predicted modality's latent space.
|
| 354 |
+
# Model invocation: self.unet.
|
| 355 |
+
pred_latents = []
|
| 356 |
+
|
| 357 |
+
for i in self.progress_bar(
|
| 358 |
+
range(0, num_images, batch_size), leave=True, desc="E2E FT predictions..."
|
| 359 |
+
):
|
| 360 |
+
batch_image_latent = image_latent[i : i + batch_size] # [B,4,h,w]
|
| 361 |
+
batch_pred_latent = pred_latent[i : i + batch_size] # [B,4,h,w]
|
| 362 |
+
effective_batch_size = batch_image_latent.shape[0]
|
| 363 |
+
text = batch_empty_text_embedding[:effective_batch_size] # [B,2,1024]
|
| 364 |
+
|
| 365 |
+
# add
|
| 366 |
+
# Single step inference for E2E FT models
|
| 367 |
+
self.scheduler.set_timesteps(1, device=device)
|
| 368 |
+
for t in self.progress_bar(self.scheduler.timesteps, leave=False, desc="Diffusion steps..."):
|
| 369 |
+
batch_latent = torch.cat([batch_image_latent, batch_pred_latent], dim=1) # [B,8,h,w]
|
| 370 |
+
noise = self.unet(batch_latent, t, encoder_hidden_states=text, return_dict=False)[0] # [B,4,h,w]
|
| 371 |
+
batch_pred_latent = self.scheduler.step(
|
| 372 |
+
noise, t, batch_pred_latent
|
| 373 |
+
).pred_original_sample # [B,4,h,w], # add
|
| 374 |
+
# directly take pred_original_sample rather than prev_sample
|
| 375 |
+
|
| 376 |
+
pred_latents.append(batch_pred_latent)
|
| 377 |
+
|
| 378 |
+
pred_latent = torch.cat(pred_latents, dim=0) # [N*E,4,h,w]
|
| 379 |
+
|
| 380 |
+
del (
|
| 381 |
+
pred_latents,
|
| 382 |
+
image_latent,
|
| 383 |
+
batch_empty_text_embedding,
|
| 384 |
+
batch_image_latent,
|
| 385 |
+
batch_pred_latent,
|
| 386 |
+
text,
|
| 387 |
+
batch_latent,
|
| 388 |
+
noise,
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
# 6. Decode predictions from latent into pixel space. The resulting `N * E` predictions have shape `(PPH, PPW)`,
|
| 392 |
+
# which requires slight postprocessing. Decoding into pixel space happens in batches of size `batch_size`.
|
| 393 |
+
# Model invocation: self.vae.decoder.
|
| 394 |
+
prediction = torch.cat(
|
| 395 |
+
[
|
| 396 |
+
self.decode_prediction(pred_latent[i : i + batch_size])
|
| 397 |
+
for i in range(0, pred_latent.shape[0], batch_size)
|
| 398 |
+
],
|
| 399 |
+
dim=0,
|
| 400 |
+
) # [N*E,3,PPH,PPW]
|
| 401 |
+
|
| 402 |
+
if not output_latent:
|
| 403 |
+
pred_latent = None
|
| 404 |
+
|
| 405 |
+
# 7. Remove padding. The output shape is (PH, PW).
|
| 406 |
+
prediction = self.image_processor.unpad_image(prediction, padding) # [N*E,3,PH,PW]
|
| 407 |
+
|
| 408 |
+
# 8. If `match_input_resolution` is set, the output prediction is upsampled to match the
|
| 409 |
+
# input resolution `(H, W)`. This step may introduce upsampling artifacts, and therefore can be disabled.
|
| 410 |
+
# After upsampling, the native resolution normal maps are renormalized to unit length to reduce the artifacts.
|
| 411 |
+
# Depending on the downstream use-case, upsampling can be also chosen based on the tolerated artifacts by
|
| 412 |
+
# setting the `resample_method_output` parameter (e.g., to `"nearest"`).
|
| 413 |
+
if match_input_resolution:
|
| 414 |
+
prediction = self.image_processor.resize_antialias(
|
| 415 |
+
prediction, original_resolution, resample_method_output, is_aa=False
|
| 416 |
+
) # [N,3,H,W]
|
| 417 |
+
prediction = self.normalize_normals(prediction) # [N,3,H,W]
|
| 418 |
+
|
| 419 |
+
# 10. Prepare the final outputs.
|
| 420 |
+
if output_type == "np":
|
| 421 |
+
prediction = self.image_processor.pt_to_numpy(prediction) # [N,H,W,3]
|
| 422 |
+
|
| 423 |
+
# 11. Offload all models
|
| 424 |
+
self.maybe_free_model_hooks()
|
| 425 |
+
|
| 426 |
+
if not return_dict:
|
| 427 |
+
return (prediction, pred_latent)
|
| 428 |
+
|
| 429 |
+
return E2EMarigoldNormalsOutput(
|
| 430 |
+
prediction=prediction,
|
| 431 |
+
latent=pred_latent,
|
| 432 |
+
)
|
| 433 |
+
|
| 434 |
+
# Copied from diffusers.pipelines.marigold.pipeline_marigold_depth.MarigoldDepthPipeline.prepare_latents
|
| 435 |
+
def prepare_latents(
|
| 436 |
+
self,
|
| 437 |
+
image: torch.Tensor,
|
| 438 |
+
batch_size: int,
|
| 439 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 440 |
+
def retrieve_latents(encoder_output):
|
| 441 |
+
if hasattr(encoder_output, "latent_dist"):
|
| 442 |
+
return encoder_output.latent_dist.mode()
|
| 443 |
+
elif hasattr(encoder_output, "latents"):
|
| 444 |
+
return encoder_output.latents
|
| 445 |
+
else:
|
| 446 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
| 447 |
+
|
| 448 |
+
image_latent = torch.cat(
|
| 449 |
+
[
|
| 450 |
+
retrieve_latents(self.vae.encode(image[i : i + batch_size]))
|
| 451 |
+
for i in range(0, image.shape[0], batch_size)
|
| 452 |
+
],
|
| 453 |
+
dim=0,
|
| 454 |
+
) # [N,4,h,w]
|
| 455 |
+
image_latent = image_latent * self.vae.config.scaling_factor # [N*E,4,h,w]
|
| 456 |
+
|
| 457 |
+
# add
|
| 458 |
+
# provide zeros as noised latent
|
| 459 |
+
pred_latent = zeros_tensor(
|
| 460 |
+
image_latent.shape,
|
| 461 |
+
device=image_latent.device,
|
| 462 |
+
dtype=image_latent.dtype,
|
| 463 |
+
) # [N*E,4,h,w]
|
| 464 |
+
|
| 465 |
+
return image_latent, pred_latent
|
| 466 |
+
|
| 467 |
+
def decode_prediction(self, pred_latent: torch.Tensor) -> torch.Tensor:
|
| 468 |
+
if pred_latent.dim() != 4 or pred_latent.shape[1] != self.vae.config.latent_channels:
|
| 469 |
+
raise ValueError(
|
| 470 |
+
f"Expecting 4D tensor of shape [B,{self.vae.config.latent_channels},H,W]; got {pred_latent.shape}."
|
| 471 |
+
)
|
| 472 |
+
|
| 473 |
+
prediction = self.vae.decode(pred_latent / self.vae.config.scaling_factor, return_dict=False)[0] # [B,3,H,W]
|
| 474 |
+
|
| 475 |
+
# add
|
| 476 |
+
prediction = self.normalize_normals(prediction) # [B,3,H,W]
|
| 477 |
+
prediction = torch.clip(prediction, -1.0, 1.0)
|
| 478 |
+
|
| 479 |
+
return prediction # [B,3,H,W]
|
| 480 |
+
|
| 481 |
+
@staticmethod
|
| 482 |
+
def normalize_normals(normals: torch.Tensor, eps: float = 1e-6) -> torch.Tensor:
|
| 483 |
+
if normals.dim() != 4 or normals.shape[1] != 3:
|
| 484 |
+
raise ValueError(f"Expecting 4D tensor of shape [B,3,H,W]; got {normals.shape}.")
|
| 485 |
+
|
| 486 |
+
norm = torch.norm(normals, dim=1, keepdim=True)
|
| 487 |
+
normals /= norm.clamp(min=eps)
|
| 488 |
+
|
| 489 |
+
return normals
|