--- base_model: google/pegasus-xsum tags: - generated_from_trainer metrics: - rouge - precision - recall - f1 model-index: - name: LLM_Teached_Pegasus_100k results: [] --- # LLM_Teached_Pegasus_100k This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5409 - Rouge1: 0.4869 - Rouge2: 0.2373 - Rougel: 0.406 - Rougelsum: 0.4058 - Gen Len: 25.3851 - Precision: 0.9131 - Recall: 0.9117 - F1: 0.9123 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:---------:|:------:|:------:| | 2.1501 | 1.0 | 781 | 1.7062 | 0.4566 | 0.209 | 0.3745 | 0.3744 | 25.4655 | 0.9082 | 0.9065 | 0.9072 | | 1.7722 | 2.0 | 1562 | 1.6314 | 0.4712 | 0.2226 | 0.3906 | 0.3904 | 25.4298 | 0.9107 | 0.909 | 0.9097 | | 1.7218 | 3.0 | 2343 | 1.5948 | 0.4776 | 0.2284 | 0.3965 | 0.3963 | 25.6569 | 0.9112 | 0.9103 | 0.9106 | | 1.6668 | 4.0 | 3125 | 1.5708 | 0.481 | 0.2316 | 0.4002 | 0.4 | 25.3451 | 0.9122 | 0.9107 | 0.9112 | | 1.6437 | 5.0 | 3906 | 1.5565 | 0.4844 | 0.2346 | 0.4034 | 0.4031 | 25.482 | 0.9127 | 0.9113 | 0.9118 | | 1.6186 | 6.0 | 4687 | 1.5476 | 0.4852 | 0.236 | 0.4047 | 0.4044 | 25.4191 | 0.9129 | 0.9115 | 0.912 | | 1.607 | 7.0 | 5468 | 1.5426 | 0.486 | 0.2367 | 0.4052 | 0.405 | 25.4949 | 0.9129 | 0.9118 | 0.9122 | | 1.5972 | 8.0 | 6248 | 1.5409 | 0.4869 | 0.2373 | 0.406 | 0.4058 | 25.3851 | 0.9131 | 0.9117 | 0.9123 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.15.0