|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
import torch.linalg as linalg |
|
|
|
from tqdm import tqdm |
|
|
|
|
|
def extract_conv( |
|
weight: nn.Parameter|torch.Tensor, |
|
mode = 'fixed', |
|
mode_param = 0, |
|
device = 'cpu', |
|
) -> tuple[nn.Parameter, nn.Parameter]: |
|
out_ch, in_ch, kernel_size, _ = weight.shape |
|
|
|
U, S, Vh = linalg.svd(weight.reshape(out_ch, -1).to(device)) |
|
|
|
if mode=='fixed': |
|
lora_rank = mode_param |
|
elif mode=='threshold': |
|
assert mode_param>=0 |
|
lora_rank = torch.sum(S>mode_param) |
|
elif mode=='ratio': |
|
assert 1>=mode_param>=0 |
|
min_s = torch.max(S)*mode_param |
|
lora_rank = torch.sum(S>min_s) |
|
elif mode=='percentile': |
|
assert 1>=mode_param>=0 |
|
s_cum = torch.cumsum(S, dim=0) |
|
min_cum_sum = mode_param * torch.sum(S) |
|
lora_rank = torch.sum(s_cum<min_cum_sum) |
|
lora_rank = max(1, lora_rank) |
|
lora_rank = min(out_ch, in_ch, lora_rank) |
|
|
|
U = U[:, :lora_rank] |
|
S = S[:lora_rank] |
|
U = U @ torch.diag(S) |
|
Vh = Vh[:lora_rank, :] |
|
|
|
extract_weight_A = Vh.reshape(lora_rank, in_ch, kernel_size, kernel_size).cpu() |
|
extract_weight_B = U.reshape(out_ch, lora_rank, 1, 1).cpu() |
|
del U, S, Vh, weight |
|
return extract_weight_A, extract_weight_B |
|
|
|
|
|
def merge_conv( |
|
weight_a: nn.Parameter|torch.Tensor, |
|
weight_b: nn.Parameter|torch.Tensor, |
|
device = 'cpu' |
|
): |
|
rank, in_ch, kernel_size, k_ = weight_a.shape |
|
out_ch, rank_, _, _ = weight_b.shape |
|
assert rank == rank_ and kernel_size == k_ |
|
|
|
wa = weight_a.to(device) |
|
wb = weight_b.to(device) |
|
|
|
if device == 'cpu': |
|
wa = wa.float() |
|
wb = wb.float() |
|
|
|
merged = wb.reshape(out_ch, -1) @ wa.reshape(rank, -1) |
|
weight = merged.reshape(out_ch, in_ch, kernel_size, kernel_size) |
|
del wb, wa |
|
return weight |
|
|
|
|
|
def extract_linear( |
|
weight: nn.Parameter|torch.Tensor, |
|
mode = 'fixed', |
|
mode_param = 0, |
|
device = 'cpu', |
|
) -> tuple[nn.Parameter, nn.Parameter]: |
|
out_ch, in_ch = weight.shape |
|
|
|
U, S, Vh = linalg.svd(weight.to(device)) |
|
|
|
if mode=='fixed': |
|
lora_rank = mode_param |
|
elif mode=='threshold': |
|
assert mode_param>=0 |
|
lora_rank = torch.sum(S>mode_param) |
|
elif mode=='ratio': |
|
assert 1>=mode_param>=0 |
|
min_s = torch.max(S)*mode_param |
|
lora_rank = torch.sum(S>min_s) |
|
elif mode=='percentile': |
|
assert 1>=mode_param>=0 |
|
s_cum = torch.cumsum(S, dim=0) |
|
min_cum_sum = mode_param * torch.sum(S) |
|
lora_rank = torch.sum(s_cum<min_cum_sum) |
|
lora_rank = max(1, lora_rank) |
|
lora_rank = min(out_ch, in_ch, lora_rank) |
|
|
|
U = U[:, :lora_rank] |
|
S = S[:lora_rank] |
|
U = U @ torch.diag(S) |
|
Vh = Vh[:lora_rank, :] |
|
|
|
extract_weight_A = Vh.reshape(lora_rank, in_ch).cpu() |
|
extract_weight_B = U.reshape(out_ch, lora_rank).cpu() |
|
del U, S, Vh, weight |
|
return extract_weight_A, extract_weight_B |
|
|
|
|
|
def merge_linear( |
|
weight_a: nn.Parameter|torch.Tensor, |
|
weight_b: nn.Parameter|torch.Tensor, |
|
device = 'cpu' |
|
): |
|
rank, in_ch = weight_a.shape |
|
out_ch, rank_ = weight_b.shape |
|
assert rank == rank_ |
|
|
|
wa = weight_a.to(device) |
|
wb = weight_b.to(device) |
|
|
|
if device == 'cpu': |
|
wa = wa.float() |
|
wb = wb.float() |
|
|
|
weight = wb @ wa |
|
del wb, wa |
|
return weight |
|
|
|
|
|
def extract_diff( |
|
base_model, |
|
db_model, |
|
mode = 'fixed', |
|
linear_mode_param = 0, |
|
conv_mode_param = 0, |
|
extract_device = 'cpu' |
|
): |
|
UNET_TARGET_REPLACE_MODULE = [ |
|
"Transformer2DModel", |
|
"Attention", |
|
"ResnetBlock2D", |
|
"Downsample2D", |
|
"Upsample2D" |
|
] |
|
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"] |
|
LORA_PREFIX_UNET = 'lora_unet' |
|
LORA_PREFIX_TEXT_ENCODER = 'lora_te' |
|
def make_state_dict( |
|
prefix, |
|
root_module: torch.nn.Module, |
|
target_module: torch.nn.Module, |
|
target_replace_modules |
|
): |
|
loras = {} |
|
temp = {} |
|
|
|
for name, module in root_module.named_modules(): |
|
if module.__class__.__name__ in target_replace_modules: |
|
temp[name] = {} |
|
for child_name, child_module in module.named_modules(): |
|
if child_module.__class__.__name__ not in {'Linear', 'Conv2d'}: |
|
continue |
|
temp[name][child_name] = child_module.weight |
|
|
|
for name, module in tqdm(list(target_module.named_modules())): |
|
if name in temp: |
|
weights = temp[name] |
|
for child_name, child_module in module.named_modules(): |
|
lora_name = prefix + '.' + name + '.' + child_name |
|
lora_name = lora_name.replace('.', '_') |
|
|
|
layer = child_module.__class__.__name__ |
|
if layer == 'Linear': |
|
extract_a, extract_b = extract_linear( |
|
(child_module.weight - weights[child_name]), |
|
mode, |
|
linear_mode_param, |
|
device = extract_device, |
|
) |
|
elif layer == 'Conv2d': |
|
is_linear = (child_module.weight.shape[2] == 1 |
|
and child_module.weight.shape[3] == 1) |
|
extract_a, extract_b = extract_conv( |
|
(child_module.weight - weights[child_name]), |
|
mode, |
|
linear_mode_param if is_linear else conv_mode_param, |
|
device = extract_device, |
|
) |
|
else: |
|
continue |
|
loras[f'{lora_name}.lora_down.weight'] = extract_a.detach().cpu().contiguous().half() |
|
loras[f'{lora_name}.lora_up.weight'] = extract_b.detach().cpu().contiguous().half() |
|
loras[f'{lora_name}.alpha'] = torch.Tensor([extract_a.shape[0]]).half() |
|
del extract_a, extract_b |
|
return loras |
|
|
|
text_encoder_loras = make_state_dict( |
|
LORA_PREFIX_TEXT_ENCODER, |
|
base_model[0], db_model[0], |
|
TEXT_ENCODER_TARGET_REPLACE_MODULE |
|
) |
|
|
|
unet_loras = make_state_dict( |
|
LORA_PREFIX_UNET, |
|
base_model[2], db_model[2], |
|
UNET_TARGET_REPLACE_MODULE |
|
) |
|
print(len(text_encoder_loras), len(unet_loras)) |
|
return text_encoder_loras|unet_loras |
|
|
|
|
|
def merge_locon( |
|
base_model, |
|
locon_state_dict: dict[str, torch.TensorType], |
|
scale: float = 1.0, |
|
device = 'cpu' |
|
): |
|
UNET_TARGET_REPLACE_MODULE = [ |
|
"Transformer2DModel", |
|
"Attention", |
|
"ResnetBlock2D", |
|
"Downsample2D", |
|
"Upsample2D" |
|
] |
|
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"] |
|
LORA_PREFIX_UNET = 'lora_unet' |
|
LORA_PREFIX_TEXT_ENCODER = 'lora_te' |
|
def merge( |
|
prefix, |
|
root_module: torch.nn.Module, |
|
target_replace_modules |
|
): |
|
temp = {} |
|
|
|
for name, module in tqdm(list(root_module.named_modules())): |
|
if module.__class__.__name__ in target_replace_modules: |
|
temp[name] = {} |
|
for child_name, child_module in module.named_modules(): |
|
layer = child_module.__class__.__name__ |
|
if layer not in {'Linear', 'Conv2d'}: |
|
continue |
|
lora_name = prefix + '.' + name + '.' + child_name |
|
lora_name = lora_name.replace('.', '_') |
|
|
|
down = locon_state_dict[f'{lora_name}.lora_down.weight'].float() |
|
up = locon_state_dict[f'{lora_name}.lora_up.weight'].float() |
|
alpha = locon_state_dict[f'{lora_name}.alpha'].float() |
|
rank = down.shape[0] |
|
|
|
if layer == 'Conv2d': |
|
delta = merge_conv(down, up, device) |
|
child_module.weight.requires_grad_(False) |
|
child_module.weight += (alpha.to(device)/rank * scale * delta).cpu() |
|
del delta |
|
elif layer == 'Linear': |
|
delta = merge_linear(down, up, device) |
|
child_module.weight.requires_grad_(False) |
|
child_module.weight += (alpha.to(device)/rank * scale * delta).cpu() |
|
del delta |
|
|
|
merge( |
|
LORA_PREFIX_TEXT_ENCODER, |
|
base_model[0], |
|
TEXT_ENCODER_TARGET_REPLACE_MODULE |
|
) |
|
merge( |
|
LORA_PREFIX_UNET, |
|
base_model[2], |
|
UNET_TARGET_REPLACE_MODULE |
|
) |