--- license: creativeml-openrail-m tags: - stable-diffusion - prompt-generator - arxiv:2210.14140 widget: - text: "amazing" - text: "a photo of" - text: "a sci-fi" - text: "a portrait of" - text: "a person standing" - text: "a boy watching" datasets: - FredZhang7/stable-diffusion-prompts-2.47M - poloclub/diffusiondb - Gustavosta/Stable-Diffusion-Prompts - bartman081523/stable-diffusion-discord-prompts --- # Fast GPT2 PromptGen This model was trained on 2,470,000 descriptive stable diffusion prompts on the [FredZhang7/distilgpt2-stable-diffusion](https://huggingface.co/FredZhang7/distilgpt2-stable-diffusion) checkpoint for another 4,270,000 steps. Compared to other prompt generation models using GPT2, this one runs with 50% faster forwardpropagation and 40% less disk space & RAM. Major improvements from v1 are: - 25% more variations - faster and more fluent prompt generation - cleaned training data * removed prompts that generate images with nsfw scores > 0.5 * removed duplicates, including prompts that differ by capitalization and punctuations * removed punctuations at random places * removed prompts shorter than 15 characters Check out [**Fast Anime PromptGen**](https://huggingface.co/FredZhang7/anime-anything-promptgen-v2)! ## Live WebUI Demo See the Prompt Generator tab of [Paint Journey Demo](https://huggingface.co/spaces/FredZhang7/paint-journey-demo). ### PyTorch ```bash pip install --upgrade transformers ``` ```python from transformers import GPT2Tokenizer, GPT2LMHeadModel tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2') tokenizer.add_special_tokens({'pad_token': '[PAD]'}) model = GPT2LMHeadModel.from_pretrained('FredZhang7/distilgpt2-stable-diffusion-v2') prompt = r'a cat sitting' # the beginning of the prompt temperature = 0.9 # a higher temperature will produce more diverse results, but with a higher risk of less coherent text top_k = 8 # the number of tokens to sample from at each step max_length = 80 # the maximum number of tokens for the output of the model repitition_penalty = 1.2 # the penalty value for each repetition of a token num_return_sequences=5 # the number of results to generate # generate the result with contrastive search input_ids = tokenizer(prompt, return_tensors='pt').input_ids output = model.generate(input_ids, do_sample=True, temperature=temperature, top_k=top_k, max_length=max_length, num_return_sequences=num_return_sequences, repetition_penalty=repitition_penalty, penalty_alpha=0.6, no_repeat_ngram_size=1, early_stopping=True) print('\nInput:\n' + 100 * '-') print('\033[96m' + prompt + '\033[0m') print('\nOutput:\n' + 100 * '-') for i in range(len(output)): print('\033[92m' + tokenizer.decode(output[i], skip_special_tokens=True) + '\033[0m\n') ``` Example output: ![constrastive search](./constrastive_search.png)