import albumentations as albu import numpy as np from iglovikov_helper_functions.utils.image_utils import pad, unpad from iglovikov_helper_functions.dl.pytorch.utils import tensor_from_rgb_image import cv2 import torch from PIL import Image def pil2tensor(image): return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0) def tensor2np(image): return np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8) class GenImageMask: def __init__(self): pass @classmethod def INPUT_TYPES(s): """ Return a dictionary which contains config for all input fields. Some types (string): "MODEL", "VAE", "CLIP", "CONDITIONING", "LATENT", "IMAGE", "INT", "STRING", "FLOAT". Input types "INT", "STRING" or "FLOAT" are special values for fields on the node. The type can be a list for selection. Returns: `dict`: - Key input_fields_group (`string`): Can be either required, hidden or optional. A node class must have property `required` - Value input_fields (`dict`): Contains input fields config: * Key field_name (`string`): Name of a entry-point method's argument * Value field_config (`tuple`): + First value is a string indicate the type of field or a list for selection. + Secound value is a config for type "INT", "STRING" or "FLOAT". """ return {"required": {"image": ("IMAGE",), "segm_model": ("SEGM_MODEL",)}} CATEGORY = "image" RETURN_TYPES = ("IMAGE",) RETURN_NAMES = ("BW Mask",) FUNCTION = "mask_image" def mask_image(self, image, segm_model): transform = albu.Compose([albu.Normalize(p=1)], p=1) image = tensor2np(image) padded_image, pads = pad(image, factor=32, border=cv2.BORDER_CONSTANT) x = transform(image=padded_image)["image"] x = torch.unsqueeze(tensor_from_rgb_image(x), 0) with torch.no_grad(): prediction = segm_model(x)[0][0] mask = (prediction > 0.01).cpu().numpy().astype(np.uint8) mask = unpad(mask, pads) imag = pil2tensor(Image.fromarray(cv2.cvtColor(mask, cv2.COLOR_GRAY2RGB) * 255)) return (imag,) NODE_CLASS_MAPPINGS = { "GenImageMask": GenImageMask, }