--- base_model: Fischerboot/Zephyr-3B-FreedomRP-Qlora-Merged library_name: peft tags: - generated_from_trainer model-index: - name: out/done results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: Fischerboot/Zephyr-3B-FreedomRP-Qlora-Merged model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: Fischerboot/mongotom-40k-alpaca type: alpaca - path: Fischerboot/freedom-rp-alpaca-shortend type: alpaca - path: Fischerboot/DAN-alpaca type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./out/done adapter: qlora lora_model_dir: sequence_len: 1024 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 1 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# out/done This model is a fine-tuned version of [Fischerboot/Zephyr-3B-FreedomRP-Qlora-Merged](https://huggingface.co/Fischerboot/Zephyr-3B-FreedomRP-Qlora-Merged) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0206 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.9159 | 0.0029 | 1 | 2.9219 | | 1.9943 | 0.9978 | 348 | 2.0447 | | 2.0417 | 1.9849 | 696 | 1.9956 | | 1.7099 | 2.9670 | 1044 | 2.0045 | | 1.5156 | 3.9477 | 1392 | 2.0206 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1