File size: 2,909 Bytes
0be1236 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wav2vec2-base-finetuned-ks
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-finetuned-ks
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6810
- Accuracy: 0.6471
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 500
- num_epochs: 25
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 5 | 0.6810 | 0.6471 |
| 0.6835 | 2.0 | 10 | 0.6785 | 0.6471 |
| 0.6835 | 3.0 | 15 | 0.6748 | 0.6471 |
| 0.6745 | 4.0 | 20 | 0.6715 | 0.6471 |
| 0.6745 | 5.0 | 25 | 0.6688 | 0.6471 |
| 0.6773 | 6.0 | 30 | 0.6622 | 0.6471 |
| 0.6773 | 7.0 | 35 | 0.6585 | 0.6471 |
| 0.6663 | 8.0 | 40 | 0.6553 | 0.6471 |
| 0.6663 | 9.0 | 45 | 0.6539 | 0.6471 |
| 0.6254 | 10.0 | 50 | 0.6514 | 0.6471 |
| 0.6254 | 11.0 | 55 | 0.6506 | 0.6471 |
| 0.6697 | 12.0 | 60 | 0.6498 | 0.6471 |
| 0.6697 | 13.0 | 65 | 0.6604 | 0.6471 |
| 0.6485 | 14.0 | 70 | 0.6556 | 0.6471 |
| 0.6485 | 15.0 | 75 | 0.6504 | 0.6471 |
| 0.6802 | 16.0 | 80 | 0.6636 | 0.6471 |
| 0.6802 | 17.0 | 85 | 0.6521 | 0.6471 |
| 0.6737 | 18.0 | 90 | 0.6494 | 0.6471 |
| 0.6737 | 19.0 | 95 | 0.6494 | 0.6471 |
| 0.6687 | 20.0 | 100 | 0.6493 | 0.6471 |
| 0.6687 | 21.0 | 105 | 0.6500 | 0.6471 |
| 0.6456 | 22.0 | 110 | 0.6500 | 0.6471 |
| 0.6456 | 23.0 | 115 | 0.6493 | 0.6471 |
| 0.6448 | 24.0 | 120 | 0.6493 | 0.6471 |
| 0.6448 | 25.0 | 125 | 0.6495 | 0.6471 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|