FantasticGNU commited on
Commit
609c6e3
Β·
1 Parent(s): 711130e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -1,6 +1,6 @@
1
  # AnomalyGPT: Detecting Industrial Anomalies using Large Vision-Language Models
2
 
3
- ![License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)
4
 
5
  <p align="left">
6
  🌐 <a href="https://anomalygpt.github.io" target="_blank">Project Page</a> β€’ πŸ€— <a href="" target="_blank">Online Demo</a> β€’ πŸ“ƒ <a href="" target="_blank">Paper</a> β€’ πŸ€– <a href="https://huggingface.co/FantasticGNU/AnomalyGPT" target="_blank">Model</a> β€’ πŸ“Ή <a href="https://www.youtube.com/watch?v=lcxBfy0YnNA" target="_blank">Video</a>
@@ -43,11 +43,11 @@ Zhaopeng Gu, Bingke Zhu, Guibo Zhu, Yingying Chen, Ming Tang, Jinqiao Wang
43
 
44
 
45
 
46
- ![](images/compare.png)
47
 
48
  **AnomalyGPT** is the first Large Vision-Language Model (LVLM) based Industrial Anomaly Detection (IAD) method that can detect anomalies in industrial images without the need for manually specified thresholds. Existing IAD methods can only provide anomaly scores and need manually threshold setting, while existing LVLMs cannot detect anomalies in the image. AnomalyGPT can not only indicate the presence and location of anomaly but also provide information about the image.
49
 
50
- ![](images/AnomalyGPT.png)
51
 
52
  We leverage a pre-trained image encoder and a Large Language Model (LLM) to align IAD images and their corresponding textual descriptions via simulated anomaly data. We employ a lightweight, visual-textual feature-matching-based image decoder to obtain localization result, and design a prompt learner to provide fine-grained semantic to LLM and fine-tune the LVLM using prompt embeddings. Our method can also detect anomalies for previously unseen items with few normal sample provided.
53
 
@@ -243,7 +243,7 @@ Note that the epoch number can be set in the `epochs` argument at [./code/config
243
 
244
  ### License
245
 
246
- AnomalyGPT is licensed under the [Apache 2.0 license](./LICENSE).
247
 
248
 
249
  ****
 
1
  # AnomalyGPT: Detecting Industrial Anomalies using Large Vision-Language Models
2
 
3
+ ![License](https://img.shields.io/badge/License-CC%20BY%20NC%20SA%204.0-red.svg)
4
 
5
  <p align="left">
6
  🌐 <a href="https://anomalygpt.github.io" target="_blank">Project Page</a> β€’ πŸ€— <a href="" target="_blank">Online Demo</a> β€’ πŸ“ƒ <a href="" target="_blank">Paper</a> β€’ πŸ€– <a href="https://huggingface.co/FantasticGNU/AnomalyGPT" target="_blank">Model</a> β€’ πŸ“Ή <a href="https://www.youtube.com/watch?v=lcxBfy0YnNA" target="_blank">Video</a>
 
43
 
44
 
45
 
46
+ !()[./images/compare.png]
47
 
48
  **AnomalyGPT** is the first Large Vision-Language Model (LVLM) based Industrial Anomaly Detection (IAD) method that can detect anomalies in industrial images without the need for manually specified thresholds. Existing IAD methods can only provide anomaly scores and need manually threshold setting, while existing LVLMs cannot detect anomalies in the image. AnomalyGPT can not only indicate the presence and location of anomaly but also provide information about the image.
49
 
50
+ !()[./images/AnomalyGPT.png]
51
 
52
  We leverage a pre-trained image encoder and a Large Language Model (LLM) to align IAD images and their corresponding textual descriptions via simulated anomaly data. We employ a lightweight, visual-textual feature-matching-based image decoder to obtain localization result, and design a prompt learner to provide fine-grained semantic to LLM and fine-tune the LVLM using prompt embeddings. Our method can also detect anomalies for previously unseen items with few normal sample provided.
53
 
 
243
 
244
  ### License
245
 
246
+ AnomalyGPT is licensed under the [CC BY-NC-SA 4.0 license](./LICENSE).
247
 
248
 
249
  ****