--- license: mit base_model: surrey-nlp/roberta-large-finetuned-abbr tags: - generated_from_trainer datasets: - plod-filtered metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-large-finetuned-abbr-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: plod-filtered type: plod-filtered config: PLODfiltered split: validation args: PLODfiltered metrics: - name: Precision type: precision value: 0.9800350338833268 - name: Recall type: recall value: 0.9766733969309696 - name: F1 type: f1 value: 0.9783513277508114 - name: Accuracy type: accuracy value: 0.9761728475392376 --- # roberta-large-finetuned-abbr-finetuned-ner This model is a fine-tuned version of [surrey-nlp/roberta-large-finetuned-abbr](https://huggingface.co/surrey-nlp/roberta-large-finetuned-abbr) on the plod-filtered dataset. It achieves the following results on the evaluation set: - Loss: 0.0913 - Precision: 0.9800 - Recall: 0.9767 - F1: 0.9784 - Accuracy: 0.9762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0805 | 0.99 | 7000 | 0.0761 | 0.9762 | 0.9722 | 0.9742 | 0.9720 | | 0.0655 | 1.99 | 14000 | 0.0682 | 0.9769 | 0.9748 | 0.9759 | 0.9735 | | 0.0469 | 2.98 | 21000 | 0.0718 | 0.9787 | 0.9746 | 0.9767 | 0.9744 | | 0.0336 | 3.98 | 28000 | 0.0851 | 0.9800 | 0.9753 | 0.9776 | 0.9753 | | 0.0259 | 4.97 | 35000 | 0.0913 | 0.9800 | 0.9767 | 0.9784 | 0.9762 | | 0.0197 | 5.97 | 42000 | 0.0948 | 0.9801 | 0.9774 | 0.9787 | 0.9766 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0