{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c3f11a594c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701330454555623643, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAOb7z732PDm6pTu1O2eq+TfWBdy6gFKmNQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF8WO4G2TgWMAWyUTegDjAF0lEdAnBU28yvcJ3V9lChoBkdAYTVz7uUliWgHTegDaAhHQJwcV0DEFW51fZQoaAZHQFuXc/+sHSpoB03oA2gIR0CcI71jy4FzdX2UKGgGR0A5oL1mJ3xGaAdNMQFoCEdAnCav5YYBNnV9lChoBkdAXl5IQOFxn2gHTegDaAhHQJwt0lkYoAp1fZQoaAZHQGAkz6SDAahoB03oA2gIR0CcNOoJAt4BdX2UKGgGR0BHvbrLQokSaAdNKAFoCEdAnDb/lIVdonV9lChoBkdAYNLvkRzzVmgHTegDaAhHQJxANCzC1qp1fZQoaAZHQFu1zEaVD8doB03oA2gIR0CcSHSCOFQEdX2UKGgGR0BiBkjHGS6laAdN6ANoCEdAnE+oHgP3BnV9lChoBkdAWpjdznzQNWgHTegDaAhHQJxW0MjNY8x1fZQoaAZHQEIrkMkQf6poB002AWgIR0CcWKsQNCqqdX2UKGgGR0BhanFR51NhaAdN6ANoCEdAnF/oNutOmHV9lChoBkdAMElARkEs8WgHTRkBaAhHQJxhmUGFBY51fZQoaAZHQGGKL3Cbc45oB03oA2gIR0CcaLafzz3AdX2UKGgGR0BgEsq8UVSGaAdN6ANoCEdAnHFAzpHI63V9lChoBkdAYA3ObAk9lmgHTegDaAhHQJx6qwX668R1fZQoaAZHQC0/tnf2saNoB0vLaAhHQJx71o4+8oR1fZQoaAZHwEOWgxrSE15oB0ujaAhHQJx9+IbfgrJ1fZQoaAZHQErbiAlOXVtoB00aAWgIR0Ccf5xbSqlxdX2UKGgGR0Bdqp6Uqx1QaAdN6ANoCEdAnIbbDAJswnV9lChoBkfAStS4BmwqzGgHS9loCEdAnIgsdxQzlHV9lChoBkfAHzJxeb/ff2gHS+RoCEdAnImLqMWGh3V9lChoBkfAOeth3JPqLWgHS4toCEdAnIpd4Z/CqXV9lChoBkfAPTSLl3hXKmgHS+JoCEdAnIzPQnhKlHV9lChoBkfAPAxxYJVsDWgHS7RoCEdAnI30o8ZDRnV9lChoBkdAXb9B6a9bo2gHTegDaAhHQJyVBcry1/l1fZQoaAZHQGF+QlByCFtoB03oA2gIR0CcnGPJq7AddX2UKGgGR0BB2oUBXCCSaAdLpWgIR0CcnWfxtpEhdX2UKGgGR8BHEmcnVoYfaAdL0mgIR0CcnpY287IUdX2UKGgGR0BcLP/3nIQwaAdN6ANoCEdAnKcFGkN4JXV9lChoBkdAYiPQu27Wd2gHTegDaAhHQJywd/mT1TR1fZQoaAZHwDXqPXCj1wpoB01cAWgIR0CcsrhXbM5fdX2UKGgGR0Ays+l0o0AMaAdNMQFoCEdAnLXXYUWVNnV9lChoBkdAYw/DkU9IPWgHTegDaAhHQJy8xDqnm7t1fZQoaAZHQDO3eHi3ocJoB00vAWgIR0Ccvo5xzaK2dX2UKGgGRz/u14gRsdkraAdNHgFoCEdAnMAtedCmdnV9lChoBkdAbUXYbsF+u2gHTZwBaAhHQJzDx/QSi/R1fZQoaAZHQGG7QOWjXWhoB03oA2gIR0CcyuV6NVBEdX2UKGgGR0BFr94eLehxaAdNaAFoCEdAnM0LMX7+DXV9lChoBkdAYDVzuF6Av2gHTegDaAhHQJzUJAJLM9t1fZQoaAZHQER8Pz4DcM5oB00qAWgIR0Cc1ezV+Zw5dX2UKGgGR0Bf+Qdfb9IgaAdN6ANoCEdAnN6JpFkQPXV9lChoBkdAYo7gRbr1NGgHTegDaAhHQJzoOvB7/n51fZQoaAZHQGBGj9XLeRBoB03oA2gIR0Cc739x6v7ndX2UKGgGR0BY3NEgGKQ8aAdN6ANoCEdAnPavrKNhmXV9lChoBkdAYRVUF0PpZGgHTegDaAhHQJz92d3B55Z1fZQoaAZHQF5iAOrhispoB03oA2gIR0CdBNcXFcY7dX2UKGgGR0BgT57w8W9EaAdN6ANoCEdAnQvs5bQkX3V9lChoBke/8+qvNeMQ3GgHS7ZoCEdAnQ0PbCaZyHV9lChoBkfARhF5+pfhM2gHS/RoCEdAnQ+Rjvuw5nV9lChoBkdARGYEKVpsXWgHTUwBaAhHQJ0RyXSjQAx1fZQoaAZHQBV3erMkhRtoB00KAWgIR0CdE8/4ZdfLdX2UKGgGR0BsjpVENOM3aAdNMgJoCEdAnRm8iGFi8XV9lChoBkdAaP0lDWsijmgHTYgBaAhHQJ0cyDEm6Xl1fZQoaAZHQGFZzOxB3RpoB03oA2gIR0CdJJswtapxdX2UKGgGR0Btpx3mmtQsaAdNSgFoCEdAnSac89wFT3V9lChoBkdAYJvuVopQUGgHTegDaAhHQJ0tzkkrwvx1fZQoaAZHQF0oPC2tuDVoB03oA2gIR0CdNUjzI3irdX2UKGgGR0BdPzsD4gzQaAdN6ANoCEdAnTyczAN5MXV9lChoBkdAXjlYEGJN02gHTegDaAhHQJ1D8rJ8v251fZQoaAZHQGgbGXPZ7HBoB01LAWgIR0CdRzWldkaudX2UKGgGR0BjPMZNwiqyaAdN6ANoCEdAnVDL1EmY0HV9lChoBkdAZRKrSVnmJWgHTegDaAhHQJ1ZHXrdFfB1fZQoaAZHQFNPYgq3EydoB03oA2gIR0CdYGSH/LkkdX2UKGgGR8Anlr9l2/zraAdNOQFoCEdAnWJNozvZy3V9lChoBkfAR7Ts4T9KmWgHS+FoCEdAnWOq8pTdcnV9lChoBkdANxwRXfZVXGgHTT8BaAhHQJ1lmLfk3jx1fZQoaAZHQGKd8Vgx8D1oB03oA2gIR0CdbMfU4JeFdX2UKGgGR0ArPamoBJZoaAdL/2gIR0Cdb3N47ihndX2UKGgGR0BgyTkELYwqaAdN6ANoCEdAnXaeWOZLI3V9lChoBkdAYdG3Zwn6VWgHTegDaAhHQJ192RxLkCF1fZQoaAZHwBiG+K0lZ5loB00jAWgIR0CdgDGR3eN2dX2UKGgGR8AcvsPatcOcaAdNKgFoCEdAnYKCx3V093V9lChoBkdAZAsSyt3fRGgHTegDaAhHQJ2L4G7jDKp1fZQoaAZHP/L0FKTSssBoB0u8aAhHQJ2NKIxgy/N1fZQoaAZHwDpJ18stkFxoB007AWgIR0CdkCNKyv9tdX2UKGgGR0Bhi1Pk7wKCaAdN6ANoCEdAnZdquSwGGHV9lChoBkdAYYC6YE4ecWgHTegDaAhHQJ2extj0+Tx1fZQoaAZHP/t/Tb349HNoB00JAWgIR0CdoFcQiA2AdX2UKGgGR0BenM9bHIZJaAdN6ANoCEdAnadmgWac7XV9lChoBkdAYWmKpDNQj2gHTegDaAhHQJ2vQwN9YwJ1fZQoaAZHQFumLPldTpBoB03oA2gIR0CdtySzPa+OdX2UKGgGR0BdQiHM2WIHaAdN6ANoCEdAncBYp+c6NnV9lChoBkdAamFh+fAbhmgHTbQDaAhHQJ3H7pLVWjp1fZQoaAZHQGr6qDbrTphoB02rA2gIR0CdztiqABkqdX2UKGgGR0BhIHzSThYOaAdN6ANoCEdAndZK4H5aeXV9lChoBkdAXiWmelKsdWgHTegDaAhHQJ3deZjQRf51fZQoaAZHQFlbxOtW+49oB03oA2gIR0Cd5I3gk1MudX2UKGgGR0Bc/Gbb1yvLaAdN6ANoCEdAneqqkyk9EHV9lChoBkdAbwu69TP0I2gHTZUCaAhHQJ3xXJDE3sJ1fZQoaAZHQG367tRekYZoB039AWgIR0Cd9rmKZUkwdX2UKGgGR0BuI9DMNc4YaAdNyAFoCEdAnfnyeI2wV3V9lChoBkdAa2mUgSvkimgHTVsCaAhHQJ3+tmpVCHB1fZQoaAZHQFzEoVEd/8VoB03oA2gIR0CeBg95Qgs9dX2UKGgGR0BUeWdNFjNIaAdN6ANoCEdAng08zuWrwXV9lChoBkdAa76rMC9ytGgHTfUBaAhHQJ4QJ1HOKO11fZQoaAZHQG5KqbBoEjhoB02UA2gIR0CeFsxesxO+dX2UKGgGR0BvJloL5RCQaAdN+QFoCEdAnhnGMju8b3V9lChoBkdAa8s28Zk08GgHTZ8BaAhHQJ4djKp1ifB1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "", ":serialized:": "gAWVGQMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoOooQY1/KjEGluOvvVcD+aZ95dIwDaW5jlIoRnXI6eQ/v+t32CHBvLw8H5wB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "", ":serialized:": "gAWVggEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oRYOLJQeuwSQH9kRQer8PakACMA2luY5SKEe+xorj2PLyYL3B8/FXpecMAdYwKaGFzX3VpbnQzMpRLAYwIdWludGVnZXKUSjnX/UV1YnViLg==", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}