--- license: cc-by-nc-4.0 tags: - merge - mergekit - lazymergekit - automerger --- ## 🧩 Configuration ```yaml #slices: # - sources: # - model: liminerity/M7-7b # layer_range: [0, 32] # - model: AurelPx/Percival_01-7b-slerp # layer_range: [0, 32] #merge_method: slerp #base_model: liminerity/M7-7b #parameters: # t: # - filter: self_attn # value: [0.10671682864418519, 0.2587429682722914, 0.7254855120576987, 0.36811557880904033, 0.01600047241283964] # - filter: mlp # value: [0.8932831713558148, 0.7412570317277086, 0.6318844211909597, 0.6318844211909597, 0.9839995275871604] # - value: 0.6580019418208543 #dtype: bfloat16 #random_seed: 0 #slices: # - sources: # - model: psmathur/orca_mini_v3_13b # layer_range: [0, 40] # - model: garage-bAInd/Platypus2-7b # layer_range: [0, 32] #merge_method: slerp #base_model: psmathur/orca_mini_v3_13b #parameters: # t: # - filter: self_attn # value: [0.10671682864418519, 0.2587429682722914, 0.7254855120576987, 0.36811557880904033, 0.01600047241283964] # - filter: mlp # value: [0.8932831713558148, 0.7412570317277086, 0.27451448794230127, 0.6318844211909597, 0.9839995275871604] # - value: 0.6580019418208543 #dtype: float16 #random_seed: 0 #slices: # - sources: # - model: psmathur/orca_mini_v3_13b # parameters: # density: [1, 0.7, 0.1] # density gradient # weight: 1.0 # - model: garage-bAInd/Platypus2-13B # parameters: # density: 0.5 # weight: [0, 0.3, 0.7, 1] # weight gradient # - model: WizardLM/WizardMath-13B-V1.0 # parameters: # density: 0.33 # weight: # - filter: mlp # value: 0.5 # - value: 0 #merge_method: ties #base_model: TheBloke/Llama-2-13B-fp16 #parameters: # normalize: true # int8_mask: true #dtype: float16 #random_seed: 0 base_model: mlabonne/AlphaMonarch-7B experts: - source_model: mlabonne/AlphaMonarch-7B positive_prompts: - "chat" - "assistant" - "tell me" - "explain" - "I want" - source_model: TheBloke/Llama-2-13B-fp16 positive_prompts: - "reason" - "math" - "mathematics" - "solve" - "count" ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "EthanLiu1991/Merged_model_MoE" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```