--- license: other base_model: microsoft/phi-1_5 tags: - generated_from_trainer model-index: - name: phi-1_5-finetuned-SQL results: [] --- # phi-1_5-finetuned-SQL This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 6000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3757 | 0.04 | 100 | 2.0747 | | 2.0269 | 0.08 | 200 | 1.9990 | | 1.9535 | 0.12 | 300 | 1.9450 | | 1.9136 | 0.16 | 400 | 1.9067 | | 1.892 | 0.2 | 500 | 1.8757 | | 1.8753 | 0.24 | 600 | 1.8574 | | 1.8507 | 0.28 | 700 | 1.8359 | | 1.8759 | 0.32 | 800 | 1.8167 | | 1.8166 | 0.36 | 900 | 1.8054 | | 1.8224 | 0.4 | 1000 | 1.7818 | | 1.7852 | 0.44 | 1100 | 1.7814 | | 1.8164 | 0.48 | 1200 | 1.7664 | | 1.7632 | 0.52 | 1300 | 1.7598 | | 1.8485 | 0.56 | 1400 | 1.7439 | | 1.7712 | 0.6 | 1500 | 1.7303 | | 1.7632 | 0.64 | 1600 | 1.7277 | | 1.7378 | 0.68 | 1700 | 1.7135 | | 1.7581 | 0.72 | 1800 | 1.7075 | | 1.7261 | 0.76 | 1900 | 1.6933 | | 1.7243 | 0.8 | 2000 | 1.6891 | | 1.7311 | 0.84 | 2100 | 1.6837 | | 1.7554 | 0.88 | 2200 | 1.6808 | | 1.7026 | 0.92 | 2300 | 1.6646 | | 1.7193 | 0.96 | 2400 | 1.6664 | | 1.6861 | 1.0 | 2500 | 1.6577 | | 1.68 | 1.04 | 2600 | 1.6470 | | 1.5931 | 1.08 | 2700 | 1.6425 | | 1.6655 | 1.12 | 2800 | 1.6352 | | 1.629 | 1.16 | 2900 | 1.6298 | | 1.6567 | 1.2 | 3000 | 1.6236 | | 1.6225 | 1.24 | 3100 | 1.6242 | | 1.6249 | 1.28 | 3200 | 1.6150 | | 1.6263 | 1.32 | 3300 | 1.6077 | | 1.6055 | 1.36 | 3400 | 1.6034 | | 1.6338 | 1.4 | 3500 | 1.5996 | | 1.6032 | 1.44 | 3600 | 1.5947 | | 1.6447 | 1.48 | 3700 | 1.5882 | | 1.6063 | 1.52 | 3800 | 1.5877 | | 1.5933 | 1.56 | 3900 | 1.5850 | | 1.6267 | 1.6 | 4000 | 1.5814 | | 1.6151 | 1.64 | 4100 | 1.5709 | | 1.6047 | 1.68 | 4200 | 1.5683 | | 1.5811 | 1.72 | 4300 | 1.5661 | | 1.5877 | 1.76 | 4400 | 1.5648 | | 1.6321 | 1.8 | 4500 | 1.5645 | | 1.5969 | 1.84 | 4600 | 1.5584 | | 1.5971 | 1.88 | 4700 | 1.5565 | | 1.622 | 1.92 | 4800 | 1.5547 | | 1.6265 | 1.96 | 4900 | 1.5496 | | 1.6145 | 2.0 | 5000 | 1.5466 | | 1.526 | 2.04 | 5100 | 1.5427 | | 1.5793 | 2.08 | 5200 | 1.5390 | | 1.5714 | 2.12 | 5300 | 1.5375 | | 1.5228 | 2.16 | 5400 | 1.5360 | | 1.5383 | 2.2 | 5500 | 1.5343 | | 1.5117 | 2.24 | 5600 | 1.5322 | | 1.5427 | 2.28 | 5700 | 1.5316 | | 1.4959 | 2.32 | 5800 | 1.5306 | | 1.5456 | 2.36 | 5900 | 1.5299 | | 1.5175 | 2.4 | 6000 | 1.5295 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1