--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2-1.5B tags: - generated_from_trainer metrics: - accuracy model-index: - name: fine_tuned_xsum_balanced results: [] --- # fine_tuned_xsum_balanced This model is a fine-tuned version of [Qwen/Qwen2-1.5B](https://huggingface.co/Qwen/Qwen2-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1586 - Accuracy: 0.9660 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.5027 | 0.3774 | 100 | 0.2355 | 0.9002 | | 0.2228 | 0.7547 | 200 | 0.1387 | 0.9544 | | 0.1361 | 1.1321 | 300 | 0.3597 | 0.9183 | | 0.0728 | 1.5094 | 400 | 0.2921 | 0.9395 | | 0.0538 | 1.8868 | 500 | 0.1586 | 0.9660 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu126 - Datasets 3.3.2 - Tokenizers 0.21.0