# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Qwen2VL model configuration"""

import os
from typing import Union

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging

logger = logging.get_logger(__name__)


class Qwen2VLVisionConfig(PretrainedConfig):
    model_type = "qwen2_vl"

    def __init__(
            self,
            depth=32,
            embed_dim=1280,
            hidden_size=3584,
            hidden_act="quick_gelu",
            mlp_ratio=4,
            num_heads=16,
            in_channels=3,
            patch_size=14,
            spatial_merge_size=2,
            temporal_patch_size=2,
            **kwargs,
    ):
        super().__init__(**kwargs)

        self.depth = depth
        self.embed_dim = embed_dim
        self.hidden_size = hidden_size
        self.hidden_act = hidden_act
        self.mlp_ratio = mlp_ratio
        self.num_heads = num_heads
        self.in_channels = in_channels
        self.patch_size = patch_size
        self.spatial_merge_size = spatial_merge_size
        self.temporal_patch_size = temporal_patch_size

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
        cls._set_token_in_kwargs(kwargs)

        config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)

        # if config_dict.get("model_type") == "qwen2_vl":
        #     config_dict = config_dict["vision_config"]

        if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
            logger.warning(
                f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
                f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
            )

        return cls.from_dict(config_dict, **kwargs)