|
import base64 |
|
from io import BytesIO |
|
from typing import Dict, List, Any |
|
|
|
import torch |
|
from PIL import Image |
|
from diffusers import StableDiffusionPipeline |
|
|
|
|
|
|
|
def decode_base64_image(image_string): |
|
base64_image = base64.b64decode(image_string) |
|
buffer = BytesIO(base64_image) |
|
return Image.open(buffer) |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
self.pipe = StableDiffusionPipeline.from_pretrained("./stable-diffusion-v1-5") |
|
self.pipe = self.pipe.to("cuda") |
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the input data and the parameters for the inference. |
|
Return: |
|
A :obj:`dict`:. base64 encoded image |
|
""" |
|
prompts = data.pop("inputs", None) |
|
encoded_image = data.pop("image", None) |
|
init_image = None |
|
if encoded_image: |
|
init_image = decode_base64_image(encoded_image) |
|
init_image.thumbnail((768, 768)) |
|
image = self.pipe(prompts, init_image=init_image).images[0] |
|
|
|
|
|
buffered = BytesIO() |
|
image.save(buffered, format="png") |
|
|
|
|
|
return {"image": buffered.getvalue()} |
|
|