--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-v3-large-irony-lr8e-6-gas2-ls0.1 results: [] --- # deberta-v3-large-irony-lr8e-6-gas2-ls0.1 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7673 - Accuracy: 0.7675 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 10.0 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6478 | 1.12 | 100 | 0.5890 | 0.7529 | | 0.5013 | 2.25 | 200 | 0.5873 | 0.7707 | | 0.388 | 3.37 | 300 | 0.6993 | 0.7602 | | 0.3169 | 4.49 | 400 | 0.6773 | 0.7874 | | 0.2693 | 5.61 | 500 | 0.7172 | 0.7707 | | 0.2396 | 6.74 | 600 | 0.7397 | 0.7801 | | 0.2284 | 7.86 | 700 | 0.8096 | 0.7550 | | 0.2207 | 8.98 | 800 | 0.7827 | 0.7654 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.9.0 - Datasets 2.2.2 - Tokenizers 0.11.6