Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## BLEURT
|
| 2 |
+
|
| 3 |
+
Pytorch version of the original BLEURT models from ACL paper ["BLEURT: Learning Robust Metrics for Text Generation"](https://aclanthology.org/2020.acl-main.704/) by
|
| 4 |
+
Thibault Sellam, Dipanjan Das and Ankur P. Parikh of Google Research.
|
| 5 |
+
|
| 6 |
+
The code for model conversion was originated from [this notebook](https://colab.research.google.com/drive/1KsCUkFW45d5_ROSv2aHtXgeBa2Z98r03?usp=sharing) mentioned [here](https://github.com/huggingface/datasets/issues/224).
|
| 7 |
+
|
| 8 |
+
## Usage Example
|
| 9 |
+
|
| 10 |
+
```python
|
| 11 |
+
from transformers import BertForSequenceClassification, AutoTokenizer
|
| 12 |
+
import torch
|
| 13 |
+
|
| 14 |
+
tokenizer = AutoTokenizer.from_pretrained("elron/bleurt-large-512")
|
| 15 |
+
model = AutoModelForSequenceClassification.from_pretrained("elron/bleurt-large-512")
|
| 16 |
+
model.eval()
|
| 17 |
+
|
| 18 |
+
references = ["hello world", "hello world"]
|
| 19 |
+
candidates = ["hi universe", "bye world"]
|
| 20 |
+
|
| 21 |
+
with torch.no_grad():
|
| 22 |
+
scores = model(**tokenizer(references, candidates, return_tensors='pt'))[0]
|
| 23 |
+
|
| 24 |
+
print(scores) # tensor([[0.9877], [0.0475]])
|
| 25 |
+
```
|