--- library_name: transformers license: mit datasets: - emhaihsan/quran-indonesia-tafseer-translation language: - id base_model: - Qwen/Qwen2.5-3B-Instruct --- # Model Card for Fine-Tuned Qwen2.5-3B-Instruct This is a fine-tuned version of the [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) model. The fine-tuning process utilized the [Quran Indonesia Tafseer Translation](https://huggingface.co/datasets/emhaihsan/quran-indonesia-tafseer-translation) dataset, which provides translations and tafsir in Bahasa Indonesia for the Quran. ## Model Details ### Model Description - **Base Model:** [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) - **Fine-Tuned By:** Ellbendl Satria - **Dataset:** [emhaihsan/quran-indonesia-tafseer-translation](https://huggingface.co/datasets/emhaihsan/quran-indonesia-tafseer-translation) - **Language:** Bahasa Indonesia - **License:** MIT This model is designed for NLP tasks involving Quranic text in Bahasa Indonesia, including understanding translations and tafsir. ## Uses ### Direct Use This model can be used for applications requiring the understanding, summarization, or retrieval of Quranic translations and tafsir in Bahasa Indonesia. ### Downstream Use It is suitable for fine-tuning on tasks such as: - Quranic text summarization - Question answering systems related to Islamic knowledge - Educational tools for learning Quranic content in Indonesian ### Out-of-Scope Use This model is not suitable for general-purpose conversation or tasks unrelated to Quranic and Islamic texts. ## Bias, Risks, and Limitations ### Biases - The model inherits any biases present in the dataset, which is specific to Islamic translations and tafsir in Bahasa Indonesia. ### Limitations - The model is tailored for Quranic and Islamic context, and its performance outside this domain may be suboptimal. - It may not accurately handle nuanced or non-standard interpretations of Quranic text. ### Recommendations - Users should ensure that applications using this model respect cultural and religious sensitivities. - Results should be verified by domain experts for critical applications. ## How to Get Started with the Model ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("Ellbendls/Qwen-2.5-3b-Quran-GGUF") model = AutoModelForCausalLM.from_pretrained("Ellbendls/Qwen-2.5-3b-Quran-GGUF") input_text = "Apa tafsir dari Surat Al-Fatihah ayat 1?" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True))