--- library_name: sklearn tags: - sklearn - skops - tabular-classification model_file: MLstructureMining_model.bin --- # Model description MLStructureMining is a tree-based machine learning classifier designed to rapidly match X-ray pair distribution function (PDF) data to prototype patterns from a large database of crystal structures, providing real-time structure characterization by screening vast quantities of data in seconds. ## Intended uses & limitations [More Information Needed] ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters.
Click to expand | Hyperparameter | Value | |-------------------------|-----------------| | objective | binary:logistic | | use_label_encoder | True | | base_score | 0.5 | | booster | gbtree | | colsample_bylevel | 1 | | colsample_bynode | 1 | | colsample_bytree | 1 | | enable_categorical | False | | gamma | 0 | | gpu_id | -1 | | importance_type | | | interaction_constraints | | | learning_rate | 0.300000012 | | max_delta_step | 0 | | max_depth | 6 | | min_child_weight | 1 | | missing | nan | | monotone_constraints | () | | n_estimators | 100 | | n_jobs | 8 | | num_parallel_tree | 1 | | predictor | auto | | random_state | 0 | | reg_alpha | 0 | | reg_lambda | 1 | | scale_pos_weight | | | subsample | 1 | | tree_method | auto | | validate_parameters | 1 | | verbosity | |
### Model Plot The model plot is below.
XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,colsample_bynode=1, colsample_bytree=1, enable_categorical=False,gamma=0, gpu_id=-1, importance_type=None,interaction_constraints='', learning_rate=0.300000012,max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan,monotone_constraints='()', n_estimators=100, n_jobs=8,num_parallel_tree=1, predictor='auto', random_state=0,reg_alpha=0, reg_lambda=1, scale_pos_weight=None, subsample=1,tree_method='auto', validate_parameters=1, verbosity=None)
Please rerun this cell to show the HTML repr or trust the notebook.
## Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|---------| | Accuracy | 91% | # How to Get Started with the Model Use the code below to get started with the model. ```python import xgboost as xgb import pandas as pd N_CPU = 8 # Number of CPUs used # Load model bst = xgb.Booster({'nthread': N_CPU}) bst.load_model("MLstructureMining_model.bin") # Load your data # data = pd.read_csv("your_data.csv") # data_xgb = xgb.DMatrix(data) # Do inference pred = bst.predict(data_xgb) ``` # Model Card Authors This model card is written by following authors: Emil T. S. Kjær # Model Card Contact You can contact the model card authors through following channels: emil.thyge.kjær@gmail.com # Citation Below you can find information related to citation. In review. **BibTeX:** ``` [More Information Needed] ```