pushing files to the repo from the example!
Browse files- README.md +233 -5
- config.json +195 -0
- init_repo_MLstructureMining.py +78 -0
- skops-c52_f3uq.pkl +3 -0
README.md
CHANGED
@@ -1,7 +1,235 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
language:
|
4 |
-
- en
|
5 |
tags:
|
6 |
-
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: sklearn
|
|
|
|
|
3 |
tags:
|
4 |
+
- sklearn
|
5 |
+
- skops
|
6 |
+
- tabular-classification
|
7 |
+
model_file: skops-c52_f3uq.pkl
|
8 |
+
widget:
|
9 |
+
structuredData:
|
10 |
+
area error:
|
11 |
+
- 30.29
|
12 |
+
- 96.05
|
13 |
+
- 48.31
|
14 |
+
compactness error:
|
15 |
+
- 0.01911
|
16 |
+
- 0.01652
|
17 |
+
- 0.01484
|
18 |
+
concave points error:
|
19 |
+
- 0.01037
|
20 |
+
- 0.0137
|
21 |
+
- 0.01093
|
22 |
+
concavity error:
|
23 |
+
- 0.02701
|
24 |
+
- 0.02269
|
25 |
+
- 0.02813
|
26 |
+
fractal dimension error:
|
27 |
+
- 0.003586
|
28 |
+
- 0.001698
|
29 |
+
- 0.002461
|
30 |
+
mean area:
|
31 |
+
- 481.9
|
32 |
+
- 1130.0
|
33 |
+
- 748.9
|
34 |
+
mean compactness:
|
35 |
+
- 0.1058
|
36 |
+
- 0.1029
|
37 |
+
- 0.1223
|
38 |
+
mean concave points:
|
39 |
+
- 0.03821
|
40 |
+
- 0.07951
|
41 |
+
- 0.08087
|
42 |
+
mean concavity:
|
43 |
+
- 0.08005
|
44 |
+
- 0.108
|
45 |
+
- 0.1466
|
46 |
+
mean fractal dimension:
|
47 |
+
- 0.06373
|
48 |
+
- 0.05461
|
49 |
+
- 0.05796
|
50 |
+
mean perimeter:
|
51 |
+
- 81.09
|
52 |
+
- 123.6
|
53 |
+
- 101.7
|
54 |
+
mean radius:
|
55 |
+
- 12.47
|
56 |
+
- 18.94
|
57 |
+
- 15.46
|
58 |
+
mean smoothness:
|
59 |
+
- 0.09965
|
60 |
+
- 0.09009
|
61 |
+
- 0.1092
|
62 |
+
mean symmetry:
|
63 |
+
- 0.1925
|
64 |
+
- 0.1582
|
65 |
+
- 0.1931
|
66 |
+
mean texture:
|
67 |
+
- 18.6
|
68 |
+
- 21.31
|
69 |
+
- 19.48
|
70 |
+
perimeter error:
|
71 |
+
- 2.497
|
72 |
+
- 5.486
|
73 |
+
- 3.094
|
74 |
+
radius error:
|
75 |
+
- 0.3961
|
76 |
+
- 0.7888
|
77 |
+
- 0.4743
|
78 |
+
smoothness error:
|
79 |
+
- 0.006953
|
80 |
+
- 0.004444
|
81 |
+
- 0.00624
|
82 |
+
symmetry error:
|
83 |
+
- 0.01782
|
84 |
+
- 0.01386
|
85 |
+
- 0.01397
|
86 |
+
texture error:
|
87 |
+
- 1.044
|
88 |
+
- 0.7975
|
89 |
+
- 0.7859
|
90 |
+
worst area:
|
91 |
+
- 677.9
|
92 |
+
- 1866.0
|
93 |
+
- 1156.0
|
94 |
+
worst compactness:
|
95 |
+
- 0.2378
|
96 |
+
- 0.2336
|
97 |
+
- 0.2394
|
98 |
+
worst concave points:
|
99 |
+
- 0.1015
|
100 |
+
- 0.1789
|
101 |
+
- 0.1514
|
102 |
+
worst concavity:
|
103 |
+
- 0.2671
|
104 |
+
- 0.2687
|
105 |
+
- 0.3791
|
106 |
+
worst fractal dimension:
|
107 |
+
- 0.0875
|
108 |
+
- 0.06589
|
109 |
+
- 0.08019
|
110 |
+
worst perimeter:
|
111 |
+
- 96.05
|
112 |
+
- 165.9
|
113 |
+
- 124.9
|
114 |
+
worst radius:
|
115 |
+
- 14.97
|
116 |
+
- 24.86
|
117 |
+
- 19.26
|
118 |
+
worst smoothness:
|
119 |
+
- 0.1426
|
120 |
+
- 0.1193
|
121 |
+
- 0.1546
|
122 |
+
worst symmetry:
|
123 |
+
- 0.3014
|
124 |
+
- 0.2551
|
125 |
+
- 0.2837
|
126 |
+
worst texture:
|
127 |
+
- 24.64
|
128 |
+
- 26.58
|
129 |
+
- 26.0
|
130 |
+
---
|
131 |
+
|
132 |
+
# Model description
|
133 |
+
|
134 |
+
[More Information Needed]
|
135 |
+
|
136 |
+
## Intended uses & limitations
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
## Training Procedure
|
141 |
+
|
142 |
+
### Hyperparameters
|
143 |
+
|
144 |
+
The model is trained with below hyperparameters.
|
145 |
+
|
146 |
+
<details>
|
147 |
+
<summary> Click to expand </summary>
|
148 |
+
|
149 |
+
| Hyperparameter | Value |
|
150 |
+
|---------------------------------|----------------------------------------------------------|
|
151 |
+
| aggressive_elimination | False |
|
152 |
+
| cv | 5 |
|
153 |
+
| error_score | nan |
|
154 |
+
| estimator__categorical_features | |
|
155 |
+
| estimator__early_stopping | auto |
|
156 |
+
| estimator__l2_regularization | 0.0 |
|
157 |
+
| estimator__learning_rate | 0.1 |
|
158 |
+
| estimator__loss | auto |
|
159 |
+
| estimator__max_bins | 255 |
|
160 |
+
| estimator__max_depth | |
|
161 |
+
| estimator__max_iter | 100 |
|
162 |
+
| estimator__max_leaf_nodes | 31 |
|
163 |
+
| estimator__min_samples_leaf | 20 |
|
164 |
+
| estimator__monotonic_cst | |
|
165 |
+
| estimator__n_iter_no_change | 10 |
|
166 |
+
| estimator__random_state | |
|
167 |
+
| estimator__scoring | loss |
|
168 |
+
| estimator__tol | 1e-07 |
|
169 |
+
| estimator__validation_fraction | 0.1 |
|
170 |
+
| estimator__verbose | 0 |
|
171 |
+
| estimator__warm_start | False |
|
172 |
+
| estimator | HistGradientBoostingClassifier() |
|
173 |
+
| factor | 3 |
|
174 |
+
| max_resources | auto |
|
175 |
+
| min_resources | exhaust |
|
176 |
+
| n_jobs | -1 |
|
177 |
+
| param_grid | {'max_leaf_nodes': [5, 10, 15], 'max_depth': [2, 5, 10]} |
|
178 |
+
| random_state | 42 |
|
179 |
+
| refit | True |
|
180 |
+
| resource | n_samples |
|
181 |
+
| return_train_score | True |
|
182 |
+
| scoring | |
|
183 |
+
| verbose | 0 |
|
184 |
+
|
185 |
+
</details>
|
186 |
+
|
187 |
+
### Model Plot
|
188 |
+
|
189 |
+
The model plot is below.
|
190 |
+
|
191 |
+
<style>#sk-44efa000-ff3f-4566-a6bf-9321209cde4e {color: black;background-color: white;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e pre{padding: 0;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e div.sk-toggleable {background-color: white;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e div.sk-estimator:hover {background-color: #d4ebff;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e div.sk-item {z-index: 1;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e div.sk-parallel-item:only-child::after {width: 0;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-44efa000-ff3f-4566-a6bf-9321209cde4e div.sk-text-repr-fallback {display: none;}</style><div id="sk-44efa000-ff3f-4566-a6bf-9321209cde4e" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>HalvingGridSearchCV(estimator=HistGradientBoostingClassifier(), n_jobs=-1,param_grid={'max_depth': [2, 5, 10],'max_leaf_nodes': [5, 10, 15]},random_state=42)</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="ac50b731-f92e-4ee9-8158-e4b19abe57a8" type="checkbox" ><label for="ac50b731-f92e-4ee9-8158-e4b19abe57a8" class="sk-toggleable__label sk-toggleable__label-arrow">HalvingGridSearchCV</label><div class="sk-toggleable__content"><pre>HalvingGridSearchCV(estimator=HistGradientBoostingClassifier(), n_jobs=-1,param_grid={'max_depth': [2, 5, 10],'max_leaf_nodes': [5, 10, 15]},random_state=42)</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="7e8aa589-efb5-47fd-acb4-21b96bdbda86" type="checkbox" ><label for="7e8aa589-efb5-47fd-acb4-21b96bdbda86" class="sk-toggleable__label sk-toggleable__label-arrow">HistGradientBoostingClassifier</label><div class="sk-toggleable__content"><pre>HistGradientBoostingClassifier()</pre></div></div></div></div></div></div></div></div></div></div>
|
192 |
+
|
193 |
+
## Evaluation Results
|
194 |
+
|
195 |
+
You can find the details about evaluation process and the evaluation results.
|
196 |
+
|
197 |
+
|
198 |
+
|
199 |
+
| Metric | Value |
|
200 |
+
|----------|---------|
|
201 |
+
|
202 |
+
# How to Get Started with the Model
|
203 |
+
|
204 |
+
Use the code below to get started with the model.
|
205 |
+
|
206 |
+
```python
|
207 |
+
import joblib
|
208 |
+
import json
|
209 |
+
import pandas as pd
|
210 |
+
clf = joblib.load(skops-c52_f3uq.pkl)
|
211 |
+
with open("config.json") as f:
|
212 |
+
config = json.load(f)
|
213 |
+
clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"]))
|
214 |
+
```
|
215 |
+
|
216 |
+
|
217 |
+
# Model Card Authors
|
218 |
+
|
219 |
+
This model card is written by following authors:
|
220 |
+
|
221 |
+
[More Information Needed]
|
222 |
+
|
223 |
+
# Model Card Contact
|
224 |
+
|
225 |
+
You can contact the model card authors through following channels:
|
226 |
+
[More Information Needed]
|
227 |
+
|
228 |
+
# Citation
|
229 |
+
|
230 |
+
Below you can find information related to citation.
|
231 |
+
|
232 |
+
**BibTeX:**
|
233 |
+
```
|
234 |
+
[More Information Needed]
|
235 |
+
```
|
config.json
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"sklearn": {
|
3 |
+
"columns": [
|
4 |
+
"mean radius",
|
5 |
+
"mean texture",
|
6 |
+
"mean perimeter",
|
7 |
+
"mean area",
|
8 |
+
"mean smoothness",
|
9 |
+
"mean compactness",
|
10 |
+
"mean concavity",
|
11 |
+
"mean concave points",
|
12 |
+
"mean symmetry",
|
13 |
+
"mean fractal dimension",
|
14 |
+
"radius error",
|
15 |
+
"texture error",
|
16 |
+
"perimeter error",
|
17 |
+
"area error",
|
18 |
+
"smoothness error",
|
19 |
+
"compactness error",
|
20 |
+
"concavity error",
|
21 |
+
"concave points error",
|
22 |
+
"symmetry error",
|
23 |
+
"fractal dimension error",
|
24 |
+
"worst radius",
|
25 |
+
"worst texture",
|
26 |
+
"worst perimeter",
|
27 |
+
"worst area",
|
28 |
+
"worst smoothness",
|
29 |
+
"worst compactness",
|
30 |
+
"worst concavity",
|
31 |
+
"worst concave points",
|
32 |
+
"worst symmetry",
|
33 |
+
"worst fractal dimension"
|
34 |
+
],
|
35 |
+
"environment": [
|
36 |
+
"scikit-learn=1.0.2"
|
37 |
+
],
|
38 |
+
"example_input": {
|
39 |
+
"area error": [
|
40 |
+
30.29,
|
41 |
+
96.05,
|
42 |
+
48.31
|
43 |
+
],
|
44 |
+
"compactness error": [
|
45 |
+
0.01911,
|
46 |
+
0.01652,
|
47 |
+
0.01484
|
48 |
+
],
|
49 |
+
"concave points error": [
|
50 |
+
0.01037,
|
51 |
+
0.0137,
|
52 |
+
0.01093
|
53 |
+
],
|
54 |
+
"concavity error": [
|
55 |
+
0.02701,
|
56 |
+
0.02269,
|
57 |
+
0.02813
|
58 |
+
],
|
59 |
+
"fractal dimension error": [
|
60 |
+
0.003586,
|
61 |
+
0.001698,
|
62 |
+
0.002461
|
63 |
+
],
|
64 |
+
"mean area": [
|
65 |
+
481.9,
|
66 |
+
1130.0,
|
67 |
+
748.9
|
68 |
+
],
|
69 |
+
"mean compactness": [
|
70 |
+
0.1058,
|
71 |
+
0.1029,
|
72 |
+
0.1223
|
73 |
+
],
|
74 |
+
"mean concave points": [
|
75 |
+
0.03821,
|
76 |
+
0.07951,
|
77 |
+
0.08087
|
78 |
+
],
|
79 |
+
"mean concavity": [
|
80 |
+
0.08005,
|
81 |
+
0.108,
|
82 |
+
0.1466
|
83 |
+
],
|
84 |
+
"mean fractal dimension": [
|
85 |
+
0.06373,
|
86 |
+
0.05461,
|
87 |
+
0.05796
|
88 |
+
],
|
89 |
+
"mean perimeter": [
|
90 |
+
81.09,
|
91 |
+
123.6,
|
92 |
+
101.7
|
93 |
+
],
|
94 |
+
"mean radius": [
|
95 |
+
12.47,
|
96 |
+
18.94,
|
97 |
+
15.46
|
98 |
+
],
|
99 |
+
"mean smoothness": [
|
100 |
+
0.09965,
|
101 |
+
0.09009,
|
102 |
+
0.1092
|
103 |
+
],
|
104 |
+
"mean symmetry": [
|
105 |
+
0.1925,
|
106 |
+
0.1582,
|
107 |
+
0.1931
|
108 |
+
],
|
109 |
+
"mean texture": [
|
110 |
+
18.6,
|
111 |
+
21.31,
|
112 |
+
19.48
|
113 |
+
],
|
114 |
+
"perimeter error": [
|
115 |
+
2.497,
|
116 |
+
5.486,
|
117 |
+
3.094
|
118 |
+
],
|
119 |
+
"radius error": [
|
120 |
+
0.3961,
|
121 |
+
0.7888,
|
122 |
+
0.4743
|
123 |
+
],
|
124 |
+
"smoothness error": [
|
125 |
+
0.006953,
|
126 |
+
0.004444,
|
127 |
+
0.00624
|
128 |
+
],
|
129 |
+
"symmetry error": [
|
130 |
+
0.01782,
|
131 |
+
0.01386,
|
132 |
+
0.01397
|
133 |
+
],
|
134 |
+
"texture error": [
|
135 |
+
1.044,
|
136 |
+
0.7975,
|
137 |
+
0.7859
|
138 |
+
],
|
139 |
+
"worst area": [
|
140 |
+
677.9,
|
141 |
+
1866.0,
|
142 |
+
1156.0
|
143 |
+
],
|
144 |
+
"worst compactness": [
|
145 |
+
0.2378,
|
146 |
+
0.2336,
|
147 |
+
0.2394
|
148 |
+
],
|
149 |
+
"worst concave points": [
|
150 |
+
0.1015,
|
151 |
+
0.1789,
|
152 |
+
0.1514
|
153 |
+
],
|
154 |
+
"worst concavity": [
|
155 |
+
0.2671,
|
156 |
+
0.2687,
|
157 |
+
0.3791
|
158 |
+
],
|
159 |
+
"worst fractal dimension": [
|
160 |
+
0.0875,
|
161 |
+
0.06589,
|
162 |
+
0.08019
|
163 |
+
],
|
164 |
+
"worst perimeter": [
|
165 |
+
96.05,
|
166 |
+
165.9,
|
167 |
+
124.9
|
168 |
+
],
|
169 |
+
"worst radius": [
|
170 |
+
14.97,
|
171 |
+
24.86,
|
172 |
+
19.26
|
173 |
+
],
|
174 |
+
"worst smoothness": [
|
175 |
+
0.1426,
|
176 |
+
0.1193,
|
177 |
+
0.1546
|
178 |
+
],
|
179 |
+
"worst symmetry": [
|
180 |
+
0.3014,
|
181 |
+
0.2551,
|
182 |
+
0.2837
|
183 |
+
],
|
184 |
+
"worst texture": [
|
185 |
+
24.64,
|
186 |
+
26.58,
|
187 |
+
26.0
|
188 |
+
]
|
189 |
+
},
|
190 |
+
"model": {
|
191 |
+
"file": "skops-c52_f3uq.pkl"
|
192 |
+
},
|
193 |
+
"task": "tabular-classification"
|
194 |
+
}
|
195 |
+
}
|
init_repo_MLstructureMining.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import pickle
|
4 |
+
from pathlib import Path
|
5 |
+
from tempfile import mkdtemp, mkstemp
|
6 |
+
from uuid import uuid4
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import xgboost
|
10 |
+
import sklearn
|
11 |
+
from huggingface_hub import HfApi
|
12 |
+
from sklearn.datasets import load_breast_cancer
|
13 |
+
from sklearn.ensemble import HistGradientBoostingClassifier
|
14 |
+
from sklearn.experimental import enable_halving_search_cv # noqa
|
15 |
+
from sklearn.model_selection import HalvingGridSearchCV, train_test_split
|
16 |
+
|
17 |
+
from skops import card, hub_utils
|
18 |
+
|
19 |
+
# Data
|
20 |
+
X, y = load_breast_cancer(as_frame=True, return_X_y=True)
|
21 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
22 |
+
X, y, test_size=0.3, random_state=42
|
23 |
+
)
|
24 |
+
print("X's summary: ", X.describe())
|
25 |
+
print("y's summary: ", y.describe())
|
26 |
+
|
27 |
+
# # Train model
|
28 |
+
param_grid = {
|
29 |
+
"max_leaf_nodes": [5, 10, 15],
|
30 |
+
"max_depth": [2, 5, 10],
|
31 |
+
}
|
32 |
+
|
33 |
+
model = HalvingGridSearchCV(
|
34 |
+
estimator=HistGradientBoostingClassifier(),
|
35 |
+
param_grid=param_grid,
|
36 |
+
random_state=42,
|
37 |
+
n_jobs=-1,
|
38 |
+
).fit(X_train, y_train)
|
39 |
+
model.score(X_test, y_test)# The file name is not significant, here we choose to save it with a `pkl`
|
40 |
+
# extension.
|
41 |
+
_, pkl_name = mkstemp(prefix="skops-", suffix=".pkl")
|
42 |
+
with open(pkl_name, mode="bw") as f:
|
43 |
+
pickle.dump(model, file=f)
|
44 |
+
|
45 |
+
local_repo = mkdtemp(prefix="skops-")
|
46 |
+
hub_utils.init(
|
47 |
+
model=pkl_name,
|
48 |
+
requirements=[f"scikit-learn={sklearn.__version__}"],
|
49 |
+
dst=local_repo,
|
50 |
+
task="tabular-classification",
|
51 |
+
data=X_test,
|
52 |
+
)
|
53 |
+
if "__file__" in locals(): # __file__ not defined during docs built
|
54 |
+
# Add this script itself to the files to be uploaded for reproducibility
|
55 |
+
hub_utils.add_files(__file__, dst=local_repo)
|
56 |
+
|
57 |
+
model_card = card.Card(model, metadata=card.metadata_from_config(Path(local_repo)))
|
58 |
+
model_card.save(Path(local_repo) / "README.md")
|
59 |
+
|
60 |
+
|
61 |
+
# you can put your own token here, or set it as an environment variable before
|
62 |
+
# running this script.
|
63 |
+
token = "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"
|
64 |
+
|
65 |
+
repo_name = f"MLstructureMining"
|
66 |
+
user_name = HfApi().whoami(token=token)["name"]
|
67 |
+
repo_id = f"{user_name}/{repo_name}"
|
68 |
+
print(f"Creating and pushing to repo: {repo_id}")
|
69 |
+
|
70 |
+
|
71 |
+
hub_utils.push(
|
72 |
+
repo_id=repo_id,
|
73 |
+
source=local_repo,
|
74 |
+
token=token,
|
75 |
+
commit_message="pushing files to the repo from the example!",
|
76 |
+
create_remote=True,
|
77 |
+
private=True,
|
78 |
+
)
|
skops-c52_f3uq.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c66fc4f332860d0670b4bd4d5e63bc66d5c635de6603524808c2976d79b0b5c7
|
3 |
+
size 242801
|