--- library_name: transformers license: apache-2.0 base_model: PlanTL-GOB-ES/roberta-large-bne-capitel-ner tags: - generated_from_trainer datasets: - biobert_json metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-large-bne-capitel-ner-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: biobert_json type: biobert_json config: Biobert_json split: validation args: Biobert_json metrics: - name: Precision type: precision value: 0.9574114124105806 - name: Recall type: recall value: 0.9658741258741259 - name: F1 type: f1 value: 0.961624150607107 - name: Accuracy type: accuracy value: 0.9810238869097464 --- # roberta-large-bne-capitel-ner-finetuned-ner This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-large-bne-capitel-ner](https://huggingface.co/PlanTL-GOB-ES/roberta-large-bne-capitel-ner) on the biobert_json dataset. It achieves the following results on the evaluation set: - Loss: 0.0918 - Precision: 0.9574 - Recall: 0.9659 - F1: 0.9616 - Accuracy: 0.9810 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1292 | 1.0 | 1224 | 0.0942 | 0.9455 | 0.9528 | 0.9491 | 0.9737 | | 0.0813 | 2.0 | 2448 | 0.0960 | 0.9443 | 0.9696 | 0.9568 | 0.9780 | | 0.0509 | 3.0 | 3672 | 0.0819 | 0.9559 | 0.9686 | 0.9622 | 0.9814 | | 0.0314 | 4.0 | 4896 | 0.0853 | 0.9557 | 0.9694 | 0.9625 | 0.9811 | | 0.0196 | 5.0 | 6120 | 0.0918 | 0.9574 | 0.9659 | 0.9616 | 0.9810 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3