--- base_model: SillyTilly/google-gemma-2-9b library_name: peft license: gemma tags: - generated_from_trainer model-index: - name: outputs/gemmy/ results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: SillyTilly/google-gemma-2-9b model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false # huggingface repo datasets: - path: MangoHQ/Claude-Data-Anon-Killed type: customgemma2 - path: kalomaze/Opus_Instruct_25k type: customgemma2 - path: kalomaze/Opus_Instruct_3k type: customgemma2 val_set_size: 0.0 output_dir: ./outputs/gemmy/ adapter: qlora lora_r: 32 lora_alpha: 32 lora_dropout: 0.05 lora_target_linear: true sequence_len: 8192 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true wandb_project: Ohashi-9B wandb_entity: wandb_watch: wandb_name: Ohashi-9B-run1 wandb_log_model: gradient_accumulation_steps: 32 micro_batch_size: 1 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.1 evals_per_epoch: eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# outputs/gemmy/ This model is a fine-tuned version of [SillyTilly/google-gemma-2-9b](https://huggingface.co/SillyTilly/google-gemma-2-9b) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.11.1 - Transformers 4.44.0.dev0 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1