{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78ceef63c600>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689995160642302352, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAaVD74Vlok/HkmOvo3jy77582q+eOH2vQAAAAAAAAAA8/bgPRBsjD6TB52+YBBVvp9g+72L2xO8AAAAAAAAAAAzArW905wzPx93MD7Zsau+aSmOvBauaT0AAAAAAAAAAA097z2LB68+Tj1kvq3cn76Vek69qEIvPQAAAAAAAAAAGumlPfH9iT2yFtu9crE1vvYomjuMEB08AAAAAAAAAADNzEg5rnGHupTPLDMc80Sq38vZug4E0bMAAIA/AACAP00tHb3S49a7RRoMvN3NlTzWYCC9aDJ8PQAAgD8AAIA/M09XPBQBmrxEGjO9c1TLO3tE07wWyEI7AACAPwAAgD+a4As9qWRMPz3HRj0NP3a+jbnuPCpYqTsAAAAAAAAAADOvEj2DdD280xcIvITg0jz2WaG9e0OqPQAAgD8AAIA/zQwxuvZcUrp6Lbw3NSgtM2cZhzqqK9q2AACAPwAAgD/NNEa8V12zP0kHG79JNWi+G2pCPAK4xD0AAAAAAAAAAAD7DL64Qa4+dzsFPgl4ar6zkle8Wsg7vQAAAAAAAAAAzXvxvFzBDryp9aI6HUmePGlXer0uR4M9AACAPwAAgD8N2Da+YhOFP/lYFb4sjKG+OsOJvikNAj4AAAAAAAAAAADIQLtJFYU/PvLUvGDKtb5C78W89mq8PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHvTP4VRDWMAWyUTSMBjAF0lEdAkaJr3wkPc3V9lChoBkdAcDIaVUuL8GgHTWABaAhHQJGjI8yN4qx1fZQoaAZHQHFkgO8TSLJoB00/AWgIR0CRpXhNucc3dX2UKGgGR0BvVmscQyylaAdNMAFoCEdAkaYCI1tO23V9lChoBkdAbZEgkC3gDWgHTTcBaAhHQJGmpejVQRB1fZQoaAZHQGyttq59Vm1oB01FAWgIR0CRp1oysS00dX2UKGgGR0BvYLriVB2PaAdNSwFoCEdAkagT6SDAanV9lChoBkdAccC0pmVZ92gHTTUBaAhHQJGorwXqJMx1fZQoaAZHQHDAXX2/SIBoB00tAWgIR0CRqRW1+iJwdX2UKGgGR0Bv6zkbPyCnaAdNRAFoCEdAkak50fYBeXV9lChoBkdAa2o9RrJr+GgHTTIBaAhHQJGqQuTRplB1fZQoaAZHQHGCshkiD/VoB00pAWgIR0CRqwXAM2FWdX2UKGgGR0BxLDpfQa73aAdNbQFoCEdAkas1HavicXV9lChoBkdAb6iSLZSNwWgHTUABaAhHQJGr0i9qUNd1fZQoaAZHQG75vp6hQFdoB001AWgIR0CRrIreqJdjdX2UKGgGR0BxcChYeT3ZaAdNfQFoCEdAka0tC7btZ3V9lChoBkdAbkQwL3K0U2gHTVUBaAhHQJGuZx5s0pF1fZQoaAZHQHHdbj5sTFloB00eAWgIR0CRr3vaURnOdX2UKGgGR0BxHB3t8eCDaAdNUwFoCEdAkbDWMfigkHV9lChoBkdAbPMy57PY4GgHTTsBaAhHQJGxLh4t6HF1fZQoaAZHQG67MvAXVLBoB006AWgIR0CRsdnqFAVxdX2UKGgGR0BwAK75Ec81aAdNTQFoCEdAkbNieI2wV3V9lChoBkdAbxGfKZDzAmgHTUEBaAhHQJGzk5bQkX11fZQoaAZHQG/BaK+BYmtoB000AWgIR0CRs6j6vaDgdX2UKGgGR0BwNmCiAUcoaAdNTgFoCEdAkbSbg0j1PHV9lChoBkdAbZRqSHM2WWgHTUMBaAhHQJG1qpwS8J51fZQoaAZHQGybEBCD28JoB002AWgIR0CRthifQKKHdX2UKGgGR0BuLoaUA1ejaAdNLgFoCEdAkbbS/wiJO3V9lChoBkdAcWvphWo3rGgHTUoBaAhHQJG3MdilSCR1fZQoaAZHQGx7DuBtk4FoB01QAWgIR0CRuU7+T/yYdX2UKGgGR0BtUnf2saKlaAdNQQFoCEdAkbuDslb/wXV9lChoBkdAbws5LAYYSGgHTXgBaAhHQJG8P3bmEGt1fZQoaAZHQHAeYnfEXLxoB00/AWgIR0CRvRJNCZ4OdX2UKGgGR0ByQCWKMvRJaAdNSAFoCEdAkb+XAIppe3V9lChoBkdATiHE61b7j2gHTegDaAhHQJHAc1JlJ6J1fZQoaAZHQHAUhu0kWyloB01mAWgIR0CRwHjoZAIIdX2UKGgGR0BwfB3fQ8fWaAdNJgFoCEdAkcCM0UGmk3V9lChoBkdAcNAVxjriVGgHTSoBaAhHQJHA2nCO3lV1fZQoaAZHQHDZRQaaTfRoB01hAWgIR0CRwTKcurZKdX2UKGgGR0Bxv8jzI3iraAdNMwFoCEdAkcE0lE7W/nV9lChoBkdAcAhNzKcNIGgHTR8BaAhHQJHBQY51eSl1fZQoaAZHQG1Cu6ErXlNoB00wAWgIR0CRwjhTfixWdX2UKGgGR0Bx0f5RCQcQaAdNGwFoCEdAkcJjjrAxjHV9lChoBkdActgK64Ds+mgHTSwBaAhHQJHDEoOQQtl1fZQoaAZHQHFgn9rGipNoB01dAWgIR0CRw6UPhAGCdX2UKGgGR0BxJEcinpB5aAdNLwFoCEdAkcRj1CgK4XV9lChoBkdAO7QR9PUKA2gHS+1oCEdAkcSyde6ZpnV9lChoBkdAcUGFyaNMoWgHTTYBaAhHQJHVfhhpg1F1fZQoaAZHQHD4WWldkaxoB01CAWgIR0CR1lCiRGMGdX2UKGgGR0Byc4LSeAd5aAdNPQFoCEdAkdjS9VWCE3V9lChoBkdAcqePrfLs8mgHTSABaAhHQJHZWoZQ53l1fZQoaAZHQHIa3ktEofFoB005AWgIR0CR2XcdYGMXdX2UKGgGR0Br3lv4ubqhaAdNOgFoCEdAkdmA+IMz/XV9lChoBkdAch8BciW3SmgHTSUBaAhHQJHZjVmSQo11fZQoaAZHQG5Iz4DcM3JoB00qAWgIR0CR2cFINEw4dX2UKGgGR0BwwW2v0RODaAdNUAFoCEdAkdp9wR5C4XV9lChoBkdAcB2bKA8SwmgHTVoBaAhHQJHahouf29N1fZQoaAZHQHGAA4S6DoRoB00bAWgIR0CR2qzS1E3LdX2UKGgGR0Bwp40XP7emaAdNPAFoCEdAkdtXGn4wiHV9lChoBkdAcerk+X7cf2gHTRABaAhHQJHbnXbuc+d1fZQoaAZHQG/TULlV94NoB01YAWgIR0CR3PIre67NdX2UKGgGR0BxPBfXwsoVaAdNJwFoCEdAkd0QVj7Q9nV9lChoBkdAcBYvovBacWgHTR0BaAhHQJHdHho/Rmd1fZQoaAZHQHAGaPn0TURoB00aAWgIR0CR3hOEug6EdX2UKGgGR0Bq1siQkonbaAdNLAFoCEdAkd9dr0rbxnV9lChoBkdAckLX1rZam2gHTQ0BaAhHQJHgjvlU6xR1fZQoaAZHQHCZ8+aBqbloB00UAWgIR0CR4UB4D9wWdX2UKGgGR0BzWR6iTMaCaAdNIQFoCEdAkeHRvm5lOHV9lChoBkdAbwd4Glhw2mgHTSIBaAhHQJHh5sCT2WZ1fZQoaAZHQHJxnX/YJ3RoB00fAWgIR0CR4gd1MdtEdX2UKGgGR0ByUoHfMwDeaAdNBwFoCEdAkeIYu01IiHV9lChoBkdAcApG/vfCRGgHTUsBaAhHQJHjDlwLmZF1fZQoaAZHQHKNeaF23a1oB00MAWgIR0CR4ycEeQuFdX2UKGgGR0BsqPOt4iX6aAdNMgFoCEdAkeN7+glF+nV9lChoBkdAcEqPi1iON2gHTVEBaAhHQJHkJ9uxbB51fZQoaAZHQHAJ7HEMspZoB00xAWgIR0CR5HZwXIludX2UKGgGR0Bwo4c6vJRwaAdNLwFoCEdAkeW3vH93r3V9lChoBkdAbi36j3225WgHTUcBaAhHQJHmlQYUFjd1fZQoaAZHQHDQ/8l5WzZoB01QAWgIR0CR5xX+VC5VdX2UKGgGR0Bu5oO4G2TgaAdNRAFoCEdAkeg5Yoy9EnV9lChoBkdAbscw9JSR82gHTTYBaAhHQJHpkVi4J/p1fZQoaAZHQHA1VeOXE61oB00SAWgIR0CR6ZzzVc2SdX2UKGgGR0BuBcsMAmzCaAdNHQFoCEdAkevTkELYw3V9lChoBkdAcqputfXws2gHTSIBaAhHQJHsanQ6ZIB1fZQoaAZHQG/LkORT0g9oB00rAWgIR0CR7MrYGt6pdX2UKGgGR0Bt40O3DvVmaAdNNQFoCEdAke0Qe7tiQXV9lChoBkdAcQHqMm4RVmgHTU8BaAhHQJHtVnbqQil1fZQoaAZHQG9FeyJKraNoB00TAWgIR0CR7WfJmukldX2UKGgGR0BwN5J4B3iaaAdNJQFoCEdAke32FN+LFXV9lChoBkdAcXuPznRsuWgHTSEBaAhHQJHuYGfPHDJ1fZQoaAZHQHCQQT/Q0GhoB00KAWgIR0CR7t8w5/9YdX2UKGgGR0BwwXSmZVn3aAdNQQFoCEdAkfCHnZCfH3V9lChoBkdAcJGRgZ0jkmgHS/5oCEdAkfE6+evpyXV9lChoBkdAb6xD1oQFtGgHTSEBaAhHQJHxZBUrCnB1fZQoaAZHQHDJJfD1oQFoB01AAWgIR0CR80CEHt4SdX2UKGgGR0Bwv28Yht+DaAdNMAFoCEdAkfOYjrzGxXV9lChoBkdAcd5AE+xGD2gHTTQBaAhHQJH0uoZQ53l1fZQoaAZHQHKqoHkcS5BoB00MAWgIR0CR9QdZ7ojfdX2UKGgGR0BxQmGfwqiHaAdNBAFoCEdAkfU0pqh11XV9lChoBkdAbUpZLZi/f2gHTWUBaAhHQJH2YSpR4yJ1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}