import argparse import itertools import math import os from pathlib import Path import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint from torch.utils.data import Dataset import PIL from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import set_seed from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, LMSDiscreteScheduler from diffusers.optimization import get_scheduler from huggingface_hub import HfFolder, Repository, whoami from PIL import Image from tqdm.auto import tqdm from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel from typing import Optional from train_global import inj_forward_text, th2image, Mapper from datasets import OpenImagesDatasetWithMask class MapperLocal(nn.Module): def __init__(self, input_dim: int, output_dim: int, ): super(MapperLocal, self).__init__() for i in range(5): setattr(self, f'mapping_{i}', nn.Sequential(nn.Linear(input_dim, 1024), nn.LayerNorm(1024), nn.LeakyReLU(), nn.Linear(1024, 1024), nn.LayerNorm(1024), nn.LeakyReLU(), nn.Linear(1024, output_dim))) setattr(self, f'mapping_patch_{i}', nn.Sequential(nn.Linear(input_dim, 1024), nn.LayerNorm(1024), nn.LeakyReLU(), nn.Linear(1024, 1024), nn.LayerNorm(1024), nn.LeakyReLU(), nn.Linear(1024, output_dim))) def forward(self, embs): hidden_states = () for i, emb in enumerate(embs): hidden_state = getattr(self, f'mapping_{i}')(emb[:, :1]) + getattr(self, f'mapping_patch_{i}')(emb[:, 1:]) hidden_states += (hidden_state.unsqueeze(0),) hidden_states = torch.cat(hidden_states, dim=0).mean(dim=0) return hidden_states value_local_list = [] def inj_forward_crossattention(self, hidden_states, encoder_hidden_states=None, attention_mask=None): context = encoder_hidden_states hidden_states_local = hidden_states.clone() if context is not None: context_tensor = context["CONTEXT_TENSOR"] else: context_tensor = hidden_states batch_size, sequence_length, _ = hidden_states.shape query = self.to_q(hidden_states) if context is not None: key = self.to_k_global(context_tensor) value = self.to_v_global(context_tensor) else: key = self.to_k(context_tensor) value = self.to_v(context_tensor) dim = query.shape[-1] query = self.reshape_heads_to_batch_dim(query) key = self.reshape_heads_to_batch_dim(key) value = self.reshape_heads_to_batch_dim(value) attention_scores = torch.matmul(query, key.transpose(-1, -2)) attention_scores = attention_scores * self.scale attention_probs = attention_scores.softmax(dim=-1) hidden_states = torch.matmul(attention_probs, value) if context is not None and "LOCAL" in context: # Perform cross attention with the local context query_local = self.to_q(hidden_states_local) key_local = self.to_k_local(context["LOCAL"]) value_local = self.to_v_local(context["LOCAL"]) query_local = self.reshape_heads_to_batch_dim(query_local) key_local = self.reshape_heads_to_batch_dim(key_local) value_local = self.reshape_heads_to_batch_dim(value_local) attention_scores_local = torch.matmul(query_local, key_local.transpose(-1, -2)) attention_scores_local = attention_scores_local * self.scale attention_probs_local = attention_scores_local.softmax(dim=-1) # To extract the attmap of learned [w] index_local = context["LOCAL_INDEX"] index_local = index_local.reshape(index_local.shape[0], 1).repeat((1, self.heads)).reshape(-1) attention_probs_clone = attention_probs.clone().permute((0, 2, 1)) attention_probs_mask = attention_probs_clone[torch.arange(index_local.shape[0]), index_local] # Normalize the attention map attention_probs_mask = attention_probs_mask.unsqueeze(2) / attention_probs_mask.max() if "LAMBDA" in context: _lambda = context["LAMBDA"] else: _lambda = 1 attention_probs_local = attention_probs_local * attention_probs_mask * _lambda hidden_states += torch.matmul(attention_probs_local, value_local) value_local_list.append(value_local) hidden_states = self.reshape_batch_dim_to_heads(hidden_states) # linear proj hidden_states = self.to_out[0](hidden_states) # dropout hidden_states = self.to_out[1](hidden_states) return hidden_states # ------------------------------------------------------------------------------ logger = get_logger(__name__) def save_progress(mapper, accelerator, args, step=None): logger.info("Saving embeddings") state_dict = accelerator.unwrap_model(mapper).state_dict() if step is not None: torch.save(state_dict, os.path.join(args.output_dir, f"local_mapper_{str(step).zfill(6)}.pt")) else: torch.save(state_dict, os.path.join(args.output_dir, "local_mapper.pt")) def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--save_steps", type=int, default=500, help="Save learned_embeds.bin every X updates steps.", ) parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--train_data_dir", type=str, default=None, required=True, help="A folder containing the training data." ) parser.add_argument( "--global_mapper_path", type=str, default=None, help="If not none, the training will start from the given checkpoints." ) parser.add_argument( "--local_mapper_path", type=str, default=None, help="If not none, the training will start from the given checkpoints." ) parser.add_argument( "--placeholder_token", type=str, default=None, required=True, help="A token to use as a placeholder for the concept.", ) parser.add_argument( "--output_dir", type=str, default="text-inversion-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=100) parser.add_argument( "--max_train_steps", type=int, default=5000, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=True, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank if args.train_data_dir is None: raise ValueError("You must specify a train data directory.") return args def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None): if token is None: token = HfFolder.get_token() if organization is None: username = whoami(token)["name"] return f"{username}/{model_id}" else: return f"{organization}/{model_id}" def freeze_params(params): for param in params: param.requires_grad = False def unfreeze_params(params): for param in params: param.requires_grad = True @torch.no_grad() def validation(example, tokenizer, image_encoder, text_encoder, unet, mapper, mapper_local, vae, device, guidance_scale, seed=None, llambda=1): scheduler = LMSDiscreteScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, ) uncond_input = tokenizer( [''] * example["pixel_values"].shape[0], padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt", ) uncond_embeddings = text_encoder({'input_ids':uncond_input.input_ids.to(device)})[0] if seed is None: latents = torch.randn( (example["pixel_values"].shape[0], unet.in_channels, 64, 64) ) else: generator = torch.manual_seed(seed) latents = torch.randn( (example["pixel_values"].shape[0], unet.in_channels, 64, 64), generator=generator, ) latents = latents.to(example["pixel_values_clip"]) scheduler.set_timesteps(100) latents = latents * scheduler.init_noise_sigma placeholder_idx = example["index"] image = F.interpolate(example["pixel_values_clip"], (224, 224), mode='bilinear') image_features = image_encoder(image, output_hidden_states=True) image_embeddings = [image_features[0], image_features[2][4], image_features[2][8], image_features[2][12], image_features[2][16]] image_embeddings = [emb.detach() for emb in image_embeddings] inj_embedding = mapper(image_embeddings) inj_embedding = inj_embedding[:, 0:1, :] encoder_hidden_states = text_encoder({'input_ids': example["input_ids"], "inj_embedding": inj_embedding, "inj_index": placeholder_idx})[0] image_obj = F.interpolate(example["pixel_values_obj"], (224, 224), mode='bilinear') image_features_obj = image_encoder(image_obj, output_hidden_states=True) image_embeddings_obj = [image_features_obj[0], image_features_obj[2][4], image_features_obj[2][8], image_features_obj[2][12], image_features_obj[2][16]] image_embeddings_obj = [emb.detach() for emb in image_embeddings_obj] inj_embedding_local = mapper_local(image_embeddings_obj) mask = F.interpolate(example["pixel_values_seg"], (16, 16), mode='nearest') mask = mask[:, 0].reshape(mask.shape[0], -1, 1) inj_embedding_local = inj_embedding_local * mask for t in tqdm(scheduler.timesteps): latent_model_input = scheduler.scale_model_input(latents, t) noise_pred_text = unet( latent_model_input, t, encoder_hidden_states={ "CONTEXT_TENSOR": encoder_hidden_states, "LOCAL": inj_embedding_local, "LOCAL_INDEX": placeholder_idx.detach(), "LAMBDA": llambda } ).sample value_local_list.clear() latent_model_input = scheduler.scale_model_input(latents, t) noise_pred_uncond = unet( latent_model_input, t, encoder_hidden_states={ "CONTEXT_TENSOR": uncond_embeddings, } ).sample value_local_list.clear() noise_pred = noise_pred_uncond + guidance_scale * ( noise_pred_text - noise_pred_uncond ) # compute the previous noisy sample x_t -> x_t-1 latents = scheduler.step(noise_pred, t, latents).prev_sample _latents = 1 / 0.18215 * latents.clone() images = vae.decode(_latents).sample ret_pil_images = [th2image(image) for image in images] return ret_pil_images def main(): args = parse_args() logging_dir = os.path.join(args.output_dir, args.logging_dir) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with="tensorboard", logging_dir=logging_dir, ) # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.push_to_hub: if args.hub_model_id is None: repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) else: repo_name = args.hub_model_id repo = Repository(args.output_dir, clone_from=repo_name) with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: if "step_*" not in gitignore: gitignore.write("step_*\n") if "epoch_*" not in gitignore: gitignore.write("epoch_*\n") elif args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) # Load the tokenizer and add the placeholder token as a additional special token tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") # Load models and create wrapper for stable diffusion text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") for _module in text_encoder.modules(): if _module.__class__.__name__ == "CLIPTextTransformer": _module.__class__.__call__ = inj_forward_text image_encoder = CLIPVisionModel.from_pretrained("openai/clip-vit-large-patch14") mapper = Mapper(input_dim=1024, output_dim=768) mapper_local = MapperLocal(input_dim=1024, output_dim=768) vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") # replace the forward method of the crossattention to finetune the to_k and to_v layers for _name, _module in unet.named_modules(): if _module.__class__.__name__ == "CrossAttention": if 'attn1' in _name: continue _module.__class__.__call__ = inj_forward_crossattention shape = _module.to_k.weight.shape to_k_global = nn.Linear(shape[1], shape[0], bias=False) to_k_global.weight.data = _module.to_k.weight.data.clone() mapper.add_module(f'{_name.replace(".", "_")}_to_k', to_k_global) shape = _module.to_v.weight.shape to_v_global = nn.Linear(shape[1], shape[0], bias=False) to_v_global.weight.data = _module.to_v.weight.data.clone() mapper.add_module(f'{_name.replace(".", "_")}_to_v', to_v_global) to_k_local = nn.Linear(shape[1], shape[0], bias=False) to_k_local.weight.data = _module.to_k.weight.data.clone() mapper_local.add_module(f'{_name.replace(".", "_")}_to_k', to_k_local) _module.add_module('to_k_local', to_k_local) to_v_local = nn.Linear(shape[1], shape[0], bias=False) to_v_local.weight.data = _module.to_v.weight.data.clone() mapper_local.add_module(f'{_name.replace(".", "_")}_to_v', to_v_local) _module.add_module('to_v_local', to_v_local) if args.global_mapper_path is None: _module.add_module('to_k_global', to_k_global) _module.add_module('to_v_global', to_v_global) if args.local_mapper_path is None: _module.add_module('to_k_local', to_k_local) _module.add_module('to_v_local', to_v_local) if args.global_mapper_path is not None: mapper.load_state_dict(torch.load(args.global_mapper_path, map_location='cpu')) for _name, _module in unet.named_modules(): if _module.__class__.__name__ == "CrossAttention": if 'attn1' in _name: continue _module.add_module('to_k_global', getattr(mapper, f'{_name.replace(".", "_")}_to_k')) _module.add_module('to_v_global', getattr(mapper, f'{_name.replace(".", "_")}_to_v')) if args.local_mapper_path is not None: mapper_local.load_state_dict(torch.load(args.local_mapper_path, map_location='cpu')) for _name, _module in unet.named_modules(): if _module.__class__.__name__ == "CrossAttention": if 'attn1' in _name: continue _module.add_module('to_k_local', getattr(mapper_local, f'{_name.replace(".", "_")}_to_k')) _module.add_module('to_v_local', getattr(mapper_local, f'{_name.replace(".", "_")}_to_v')) # Freeze vae and unet freeze_params(vae.parameters()) freeze_params(unet.parameters()) freeze_params(text_encoder.parameters()) freeze_params(image_encoder.parameters()) unfreeze_params(mapper_local.parameters()) if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Initialize the optimizer optimizer = torch.optim.AdamW( itertools.chain(mapper_local.parameters()), # only optimize the embeddings lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) noise_scheduler = DDPMScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler") train_dataset = OpenImagesDatasetWithMask( data_root=args.train_data_dir, tokenizer=tokenizer, size=args.resolution, placeholder_token=args.placeholder_token, set="test" ) train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.train_batch_size, shuffle=True) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, ) mapper_local, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( mapper_local, optimizer, train_dataloader, lr_scheduler ) # Move vae and unet to device vae.to(accelerator.device) unet.to(accelerator.device) image_encoder.to(accelerator.device) text_encoder.to(accelerator.device) mapper.to(accelerator.device) # Keep vae and unet in eval model as we don't train these vae.eval() unet.eval() image_encoder.eval() mapper.eval() # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initialize automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers("elite", config=vars(args)) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) progress_bar.set_description("Steps") global_step = 0 for epoch in range(args.num_train_epochs): mapper_local.train() for step, batch in enumerate(train_dataloader): with accelerator.accumulate(mapper_local): # Convert images to latent space latents = vae.encode(batch["pixel_values"]).latent_dist.sample().detach() latents = latents * 0.18215 # Sample noise that we'll add to the latents noise = torch.randn(latents.shape).to(latents.device) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint( 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device ).long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) placeholder_idx = batch["index"] image = F.interpolate(batch["pixel_values_clip"], (224, 224), mode='bilinear') image_obj = F.interpolate(batch["pixel_values_obj"], (224, 224), mode='bilinear') mask = F.interpolate(batch["pixel_values_seg"], (16, 16), mode='nearest') mask = mask[:, 0].reshape(mask.shape[0], -1, 1) image_features = image_encoder(image, output_hidden_states=True) image_embeddings = [image_features[0], image_features[2][4], image_features[2][8], image_features[2][12], image_features[2][16]] image_embeddings = [emb.detach() for emb in image_embeddings] inj_embedding = mapper(image_embeddings) # only use the first word inj_embedding = inj_embedding[:, 0:1, :] # Get the text embedding for conditioning encoder_hidden_states = text_encoder({'input_ids': batch["input_ids"], "inj_embedding": inj_embedding, "inj_index": placeholder_idx.detach()})[0] image_features_obj = image_encoder(image_obj, output_hidden_states=True) image_embeddings_obj = [image_features_obj[0], image_features_obj[2][4], image_features_obj[2][8], image_features_obj[2][12], image_features_obj[2][16]] image_embeddings_obj = [emb.detach() for emb in image_embeddings_obj] inj_embedding_local = mapper_local(image_embeddings_obj) inj_embedding_local = inj_embedding_local * mask noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states={ "CONTEXT_TENSOR": encoder_hidden_states, "LOCAL": inj_embedding_local, "LOCAL_INDEX": placeholder_idx.detach() }).sample mask_values = batch["mask_values"] loss_mle = F.mse_loss(noise_pred, noise, reduction="none") loss_mle = ((loss_mle*mask_values).sum([1, 2, 3])/mask_values.sum([1, 2, 3])).mean() loss_reg = 0 for vvv in value_local_list: loss_reg += torch.mean(torch.abs(vvv)) loss_reg = loss_reg / len(value_local_list) * 0.0001 loss = loss_mle + loss_reg accelerator.backward(loss) if accelerator.sync_gradients: accelerator.clip_grad_norm_(mapper_local.parameters(), 1) optimizer.step() lr_scheduler.step() optimizer.zero_grad() value_local_list.clear() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 if global_step % args.save_steps == 0: save_progress(mapper_local, accelerator, args, global_step) syn_images = validation(batch, tokenizer, image_encoder, text_encoder, unet, mapper, mapper_local, vae, batch["pixel_values_clip"].device, 5) input_images = [th2image(img) for img in batch["pixel_values"]] clip_images = [th2image(img).resize((512, 512)) for img in batch["pixel_values_clip"]] obj_images = [th2image(img).resize((512, 512)) for img in batch["pixel_values_obj"]] input_masks = torch.cat([mask_values, mask_values, mask_values], dim=1) input_masks = [th2image(img).resize((512, 512)) for img in input_masks] obj_masks = [th2image(img).resize((512, 512)) for img in batch["pixel_values_seg"]] img_list = [] for syn, input_img, input_mask, clip_image, obj_image, obj_mask in zip(syn_images, input_images, input_masks, clip_images, obj_images, obj_masks): img_list.append(np.concatenate((np.array(syn), np.array(input_img), np.array(input_mask), np.array(clip_image), np.array(obj_image), np.array(obj_mask)), axis=1)) img_list = np.concatenate(img_list, axis=0) Image.fromarray(img_list).save(os.path.join(args.output_dir, f"{str(global_step).zfill(5)}.jpg")) logs = {"loss_mle": loss_mle.detach().item(), "loss_reg": loss_reg.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break accelerator.wait_for_everyone() if accelerator.is_main_process: save_progress(mapper_local, accelerator, args) accelerator.end_training() if __name__ == "__main__": main()