import argparse import itertools import math import os from pathlib import Path import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint from torch.utils.data import Dataset import PIL from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import set_seed from diffusers import AutoencoderKL, DDPMScheduler, PNDMScheduler, StableDiffusionPipeline, UNet2DConditionModel, LMSDiscreteScheduler from diffusers.optimization import get_scheduler from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker from huggingface_hub import HfFolder, Repository, whoami # TODO: remove and import from diffusers.utils when the new version of diffusers is released from PIL import Image from tqdm.auto import tqdm from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer, CLIPVisionModel from typing import Optional from train_global import inj_forward_text, th2image, Mapper from datasets import OpenImagesDatasetWithMask class MapperLocal(nn.Module): def __init__(self, input_dim: int, output_dim: int, ): super(MapperLocal, self).__init__() for i in range(5): setattr(self, f'mapping_{i}', nn.Sequential(nn.Linear(input_dim, 1024), nn.LayerNorm(1024), nn.LeakyReLU(), nn.Linear(1024, 1024), nn.LayerNorm(1024), nn.LeakyReLU(), nn.Linear(1024, output_dim))) setattr(self, f'mapping_patch_{i}', nn.Sequential(nn.Linear(input_dim, 1024), nn.LayerNorm(1024), nn.LeakyReLU(), nn.Linear(1024, 1024), nn.LayerNorm(1024), nn.LeakyReLU(), nn.Linear(1024, output_dim))) def forward(self, embs): hidden_states = () for i, emb in enumerate(embs): hidden_state = getattr(self, f'mapping_{i}')(emb[:, :1]) + getattr(self, f'mapping_patch_{i}')(emb[:, 1:]) hidden_states += (hidden_state.unsqueeze(0),) hidden_states = torch.cat(hidden_states, dim=0).mean(dim=0) return hidden_states value_local_list = [] def inj_forward_crossattention(self, hidden_states, encoder_hidden_states=None, attention_mask=None): context = encoder_hidden_states hidden_states_local = hidden_states.clone() if context is not None: context_tensor = context["CONTEXT_TENSOR"] else: context_tensor = hidden_states batch_size, sequence_length, _ = hidden_states.shape query = self.to_q(hidden_states) if context is not None: key = self.to_k_global(context_tensor) value = self.to_v_global(context_tensor) else: key = self.to_k(context_tensor) value = self.to_v(context_tensor) dim = query.shape[-1] query = self.reshape_heads_to_batch_dim(query) key = self.reshape_heads_to_batch_dim(key) value = self.reshape_heads_to_batch_dim(value) attention_scores = torch.matmul(query, key.transpose(-1, -2)) attention_scores = attention_scores * self.scale attention_probs = attention_scores.softmax(dim=-1) hidden_states = torch.matmul(attention_probs, value) if context is not None and "LOCAL" in context: # Perform cross attention with the local context query_local = self.to_q(hidden_states_local) key_local = self.to_k_local(context["LOCAL"]) value_local = self.to_v_local(context["LOCAL"]) query_local = self.reshape_heads_to_batch_dim(query_local) key_local = self.reshape_heads_to_batch_dim(key_local) value_local = self.reshape_heads_to_batch_dim(value_local) attention_scores_local = torch.matmul(query_local, key_local.transpose(-1, -2)) attention_scores_local = attention_scores_local * self.scale attention_probs_local = attention_scores_local.softmax(dim=-1) # To extract the attmap of learned [w] index_local = context["LOCAL_INDEX"] index_local = index_local.reshape(index_local.shape[0], 1).repeat((1, self.heads)).reshape(-1) attention_probs_clone = attention_probs.clone().permute((0, 2, 1)) attention_probs_mask = attention_probs_clone[torch.arange(index_local.shape[0]), index_local] # Normalize the attention map attention_probs_mask = attention_probs_mask.unsqueeze(2) / attention_probs_mask.max() if "LAMBDA" in context: _lambda = context["LAMBDA"] else: _lambda = 1 attention_probs_local = attention_probs_local * attention_probs_mask * _lambda hidden_states += torch.matmul(attention_probs_local, value_local) value_local_list.append(value_local) hidden_states = self.reshape_batch_dim_to_heads(hidden_states) # linear proj hidden_states = self.to_out[0](hidden_states) # dropout hidden_states = self.to_out[1](hidden_states) return hidden_states # ------------------------------------------------------------------------------ logger = get_logger(__name__) def save_progress(mapper, accelerator, args, step=None): logger.info("Saving embeddings") state_dict = accelerator.unwrap_model(mapper).state_dict() if step is not None: torch.save(state_dict, os.path.join(args.output_dir, f"local_mapper_{str(step).zfill(6)}.pt")) else: torch.save(state_dict, os.path.join(args.output_dir, "local_mapper.pt")) def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--save_steps", type=int, default=500, help="Save learned_embeds.bin every X updates steps.", ) parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--train_data_dir", type=str, default=None, required=True, help="A folder containing the training data." ) parser.add_argument( "--global_mapper_path", type=str, default=None, help="If not none, the training will start from the given checkpoints." ) parser.add_argument( "--local_mapper_path", type=str, default=None, help="If not none, the training will start from the given checkpoints." ) parser.add_argument( "--placeholder_token", type=str, default=None, required=True, help="A token to use as a placeholder for the concept.", ) parser.add_argument( "--output_dir", type=str, default="text-inversion-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=100) parser.add_argument( "--max_train_steps", type=int, default=5000, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=True, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank if args.train_data_dir is None: raise ValueError("You must specify a train data directory.") return args def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None): if token is None: token = HfFolder.get_token() if organization is None: username = whoami(token)["name"] return f"{username}/{model_id}" else: return f"{organization}/{model_id}" def freeze_params(params): for param in params: param.requires_grad = False def unfreeze_params(params): for param in params: param.requires_grad = True @torch.no_grad() def validation(example, tokenizer, image_encoder, text_encoder, unet, mapper, mapper_local, vae, device, guidance_scale, seed=None, llambda=1): scheduler = LMSDiscreteScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, ) uncond_input = tokenizer( [''] * example["pixel_values"].shape[0], padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt", ) uncond_embeddings = text_encoder({'input_ids':uncond_input.input_ids.to(device)})[0] if seed is None: latents = torch.randn( (example["pixel_values"].shape[0], unet.in_channels, 64, 64) ) else: generator = torch.manual_seed(seed) latents = torch.randn( (example["pixel_values"].shape[0], unet.in_channels, 64, 64), generator=generator, ) latents = latents.to(example["pixel_values_clip"]) scheduler.set_timesteps(100) latents = latents * scheduler.init_noise_sigma placeholder_idx = example["index"] image = F.interpolate(example["pixel_values_clip"], (224, 224), mode='bilinear') image_features = image_encoder(image, output_hidden_states=True) image_embeddings = [image_features[0], image_features[2][4], image_features[2][8], image_features[2][12], image_features[2][16]] image_embeddings = [emb.detach() for emb in image_embeddings] inj_embedding = mapper(image_embeddings) inj_embedding = inj_embedding[:, 0:1, :] encoder_hidden_states = text_encoder({'input_ids': example["input_ids"], "inj_embedding": inj_embedding, "inj_index": placeholder_idx})[0] image_obj = F.interpolate(example["pixel_values_obj"], (224, 224), mode='bilinear') image_features_obj = image_encoder(image_obj, output_hidden_states=True) image_embeddings_obj = [image_features_obj[0], image_features_obj[2][4], image_features_obj[2][8], image_features_obj[2][12], image_features_obj[2][16]] image_embeddings_obj = [emb.detach() for emb in image_embeddings_obj] inj_embedding_local = mapper_local(image_embeddings_obj) mask = F.interpolate(example["pixel_values_seg"], (16, 16), mode='nearest') mask = mask[:, 0].reshape(mask.shape[0], -1, 1) inj_embedding_local = inj_embedding_local * mask for t in tqdm(scheduler.timesteps): latent_model_input = scheduler.scale_model_input(latents, t) noise_pred_text = unet( latent_model_input, t, encoder_hidden_states={ "CONTEXT_TENSOR": encoder_hidden_states, "LOCAL": inj_embedding_local, "LOCAL_INDEX": placeholder_idx.detach(), "LAMBDA": llambda } ).sample value_local_list.clear() latent_model_input = scheduler.scale_model_input(latents, t) noise_pred_uncond = unet( latent_model_input, t, encoder_hidden_states={ "CONTEXT_TENSOR": uncond_embeddings, } ).sample value_local_list.clear() noise_pred = noise_pred_uncond + guidance_scale * ( noise_pred_text - noise_pred_uncond ) # compute the previous noisy sample x_t -> x_t-1 latents = scheduler.step(noise_pred, t, latents).prev_sample _latents = 1 / 0.18215 * latents.clone() images = vae.decode(_latents).sample ret_pil_images = [th2image(image) for image in images] return ret_pil_images def main(): args = parse_args() logging_dir = os.path.join(args.output_dir, args.logging_dir) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with="tensorboard", logging_dir=logging_dir, ) # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.push_to_hub: if args.hub_model_id is None: repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) else: repo_name = args.hub_model_id repo = Repository(args.output_dir, clone_from=repo_name) with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: if "step_*" not in gitignore: gitignore.write("step_*\n") if "epoch_*" not in gitignore: gitignore.write("epoch_*\n") elif args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) # Load the tokenizer and add the placeholder token as a additional special token tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") # Load models and create wrapper for stable diffusion text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") for _module in text_encoder.modules(): if _module.__class__.__name__ == "CLIPTextTransformer": _module.__class__.__call__ = inj_forward_text image_encoder = CLIPVisionModel.from_pretrained("openai/clip-vit-large-patch14") mapper = Mapper(input_dim=1024, output_dim=768) mapper_local = MapperLocal(input_dim=1024, output_dim=768) vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") # replace the forward method of the crossattention to finetune the to_k and to_v layers for _name, _module in unet.named_modules(): if _module.__class__.__name__ == "CrossAttention": if 'attn1' in _name: continue _module.__class__.__call__ = inj_forward_crossattention shape = _module.to_k.weight.shape to_k_global = nn.Linear(shape[1], shape[0], bias=False) to_k_global.weight.data = _module.to_k.weight.data.clone() mapper.add_module(f'{_name.replace(".", "_")}_to_k', to_k_global) shape = _module.to_v.weight.shape to_v_global = nn.Linear(shape[1], shape[0], bias=False) to_v_global.weight.data = _module.to_v.weight.data.clone() mapper.add_module(f'{_name.replace(".", "_")}_to_v', to_v_global) to_k_local = nn.Linear(shape[1], shape[0], bias=False) to_k_local.weight.data = _module.to_k.weight.data.clone() mapper_local.add_module(f'{_name.replace(".", "_")}_to_k', to_k_local) _module.add_module('to_k_local', to_k_local) to_v_local = nn.Linear(shape[1], shape[0], bias=False) to_v_local.weight.data = _module.to_v.weight.data.clone() mapper_local.add_module(f'{_name.replace(".", "_")}_to_v', to_v_local) _module.add_module('to_v_local', to_v_local) if args.global_mapper_path is None: _module.add_module('to_k_global', to_k_global) _module.add_module('to_v_global', to_v_global) if args.local_mapper_path is None: _module.add_module('to_k_local', to_k_local) _module.add_module('to_v_local', to_v_local) if args.global_mapper_path is not None: mapper.load_state_dict(torch.load(args.global_mapper_path, map_location='cpu')) for _name, _module in unet.named_modules(): if _module.__class__.__name__ == "CrossAttention": if 'attn1' in _name: continue _module.add_module('to_k_global', getattr(mapper, f'{_name.replace(".", "_")}_to_k')) _module.add_module('to_v_global', getattr(mapper, f'{_name.replace(".", "_")}_to_v')) if args.local_mapper_path is not None: mapper_local.load_state_dict(torch.load(args.local_mapper_path, map_location='cpu')) for _name, _module in unet.named_modules(): if _module.__class__.__name__ == "CrossAttention": if 'attn1' in _name: continue _module.add_module('to_k_local', getattr(mapper_local, f'{_name.replace(".", "_")}_to_k')) _module.add_module('to_v_local', getattr(mapper_local, f'{_name.replace(".", "_")}_to_v')) # Freeze vae and unet freeze_params(vae.parameters()) freeze_params(unet.parameters()) freeze_params(text_encoder.parameters()) freeze_params(image_encoder.parameters()) unfreeze_params(mapper_local.parameters()) if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Initialize the optimizer optimizer = torch.optim.AdamW( itertools.chain(mapper_local.parameters()), # only optimize the embeddings lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) noise_scheduler = DDPMScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler") train_dataset = OpenImagesDatasetWithMask( data_root=args.train_data_dir, tokenizer=tokenizer, size=args.resolution, placeholder_token=args.placeholder_token, set="test" ) train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.train_batch_size, shuffle=True) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, ) mapper_local, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( mapper_local, optimizer, train_dataloader, lr_scheduler ) # Move vae and unet to device vae.to(accelerator.device) unet.to(accelerator.device) image_encoder.to(accelerator.device) text_encoder.to(accelerator.device) mapper.to(accelerator.device) # Keep vae and unet in eval model as we don't train these vae.eval() unet.eval() image_encoder.eval() mapper.eval() # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initialize automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers("elite", config=vars(args)) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) progress_bar.set_description("Steps") global_step = 0 for epoch in range(args.num_train_epochs): mapper_local.train() for step, batch in enumerate(train_dataloader): with accelerator.accumulate(mapper_local): # Convert images to latent space latents = vae.encode(batch["pixel_values"]).latent_dist.sample().detach() latents = latents * 0.18215 # Sample noise that we'll add to the latents noise = torch.randn(latents.shape).to(latents.device) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint( 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device ).long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) placeholder_idx = batch["index"] image = F.interpolate(batch["pixel_values_clip"], (224, 224), mode='bilinear') image_obj = F.interpolate(batch["pixel_values_obj"], (224, 224), mode='bilinear') mask = F.interpolate(batch["pixel_values_seg"], (16, 16), mode='nearest') mask = mask[:, 0].reshape(mask.shape[0], -1, 1) image_features = image_encoder(image, output_hidden_states=True) image_embeddings = [image_features[0], image_features[2][4], image_features[2][8], image_features[2][12], image_features[2][16]] image_embeddings = [emb.detach() for emb in image_embeddings] inj_embedding = mapper(image_embeddings) # only use the first word inj_embedding = inj_embedding[:, 0:1, :] # Get the text embedding for conditioning encoder_hidden_states = text_encoder({'input_ids': batch["input_ids"], "inj_embedding": inj_embedding, "inj_index": placeholder_idx.detach()})[0] image_features_obj = image_encoder(image_obj, output_hidden_states=True) image_embeddings_obj = [image_features_obj[0], image_features_obj[2][4], image_features_obj[2][8], image_features_obj[2][12], image_features_obj[2][16]] image_embeddings_obj = [emb.detach() for emb in image_embeddings_obj] inj_embedding_local = mapper_local(image_embeddings_obj) inj_embedding_local = inj_embedding_local * mask noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states={ "CONTEXT_TENSOR": encoder_hidden_states, "LOCAL": inj_embedding_local, "LOCAL_INDEX": placeholder_idx.detach() }).sample mask_values = batch["mask_values"] loss_mle = F.mse_loss(noise_pred, noise, reduction="none") loss_mle = ((loss_mle*mask_values).sum([1, 2, 3])/mask_values.sum([1, 2, 3])).mean() loss_reg = 0 for vvv in value_local_list: loss_reg += torch.mean(torch.abs(vvv)) loss_reg = loss_reg / len(value_local_list) * 0.0001 loss = loss_mle + loss_reg accelerator.backward(loss) if accelerator.sync_gradients: accelerator.clip_grad_norm_(mapper_local.parameters(), 1) optimizer.step() lr_scheduler.step() optimizer.zero_grad() value_local_list.clear() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 if global_step % args.save_steps == 0: save_progress(mapper_local, accelerator, args, global_step) syn_images = validation(batch, tokenizer, image_encoder, text_encoder, unet, mapper, mapper_local, vae, batch["pixel_values_clip"].device, 5) input_images = [th2image(img) for img in batch["pixel_values"]] clip_images = [th2image(img).resize((512, 512)) for img in batch["pixel_values_clip"]] obj_images = [th2image(img).resize((512, 512)) for img in batch["pixel_values_obj"]] input_masks = torch.cat([mask_values, mask_values, mask_values], dim=1) input_masks = [th2image(img).resize((512, 512)) for img in input_masks] obj_masks = [th2image(img).resize((512, 512)) for img in batch["pixel_values_seg"]] img_list = [] for syn, input_img, input_mask, clip_image, obj_image, obj_mask in zip(syn_images, input_images, input_masks, clip_images, obj_images, obj_masks): img_list.append(np.concatenate((np.array(syn), np.array(input_img), np.array(input_mask), np.array(clip_image), np.array(obj_image), np.array(obj_mask)), axis=1)) img_list = np.concatenate(img_list, axis=0) Image.fromarray(img_list).save(os.path.join(args.output_dir, f"{str(global_step).zfill(5)}.jpg")) logs = {"loss_mle": loss_mle.detach().item(), "loss_reg": loss_reg.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break accelerator.wait_for_everyone() if accelerator.is_main_process: save_progress(mapper_local, accelerator, args) accelerator.end_training() if __name__ == "__main__": main()