""" # Example: Use Numba to speed up the retrieval process ```bash pip install "bm25s[full]" numba ``` To build an index, please refer to the `examples/index_and_upload_to_hf.py` script. Now, to run this script, execute: ```bash python examples/retrieve_with_numba.py ``` """ import os import Stemmer import bm25s.hf def main(repo_name="xhluca/bm25s-fiqa-index"): queries = [ "Is chemotherapy effective for treating cancer?", "Is Cardiac injury is common in critical cases of COVID-19?", ] retriever = bm25s.hf.BM25HF.load_from_hub( repo_name, load_corpus=False, mmap=False ) # Tokenize the queries stemmer = Stemmer.Stemmer("english") queries_tokenized = bm25s.tokenize(queries, stemmer=stemmer) # Retrieve the top-k results retriever.activate_numba_scorer() results = retriever.retrieve(queries_tokenized, k=3, backend_selection="numba") # show first results result = results.documents[0] print(f"First score (# 1 result):{results.scores[0, 0]}") print(f"First result (# 1 result):\n{result[0]}") if __name__ == "__main__": main()