--- base_model: microsoft/codebert-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: codebert-base-password-strength-classifier-normal-weight-balancing results: [] --- # codebert-base-password-strength-classifier-normal-weight-balancing This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0083 - Accuracy: 0.9977 - Weighted f1: 0.9977 - Micro f1: 0.9977 - Macro f1: 0.9966 - Weighted recall: 0.9977 - Micro recall: 0.9977 - Macro recall: 0.9979 - Weighted precision: 0.9977 - Micro precision: 0.9977 - Macro precision: 0.9953 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| | 0.0345 | 1.0 | 37667 | 0.0522 | 0.9825 | 0.9829 | 0.9825 | 0.9755 | 0.9825 | 0.9825 | 0.9915 | 0.9844 | 0.9825 | 0.9619 | | 0.0099 | 2.0 | 75334 | 0.0083 | 0.9977 | 0.9977 | 0.9977 | 0.9966 | 0.9977 | 0.9977 | 0.9979 | 0.9977 | 0.9977 | 0.9953 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.6.dev0 - Tokenizers 0.13.3