--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-0.5B tags: - axolotl - generated_from_trainer model-index: - name: 0a929cd7-4abe-4be4-bfa0-d7da7d03b9b8 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-0.5B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 827d98d6f834ce6e_train_data.json ds_type: json format: custom path: /workspace/input_data/827d98d6f834ce6e_train_data.json type: field_input: question field_instruction: messages field_output: model_response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 256 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: Dolboebina/0a929cd7-4abe-4be4-bfa0-d7da7d03b9b8 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 10 micro_batch_size: 2 mlflow_experiment_name: /tmp/827d98d6f834ce6e_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null sample_packing: true saves_per_epoch: 4 sequence_len: 4096 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0a929cd7-4abe-4be4-bfa0-d7da7d03b9b8 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0a929cd7-4abe-4be4-bfa0-d7da7d03b9b8 warmup_steps: 10 weight_decay: 0.01 xformers_attention: false ```

# 0a929cd7-4abe-4be4-bfa0-d7da7d03b9b8 This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7006 | 0.0015 | 1 | 1.4715 | | 1.3025 | 0.0044 | 3 | 1.3203 | | 1.1745 | 0.0089 | 6 | 0.8342 | | 0.5756 | 0.0133 | 9 | 0.5901 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1