--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:2270482 - loss:BatchHardSoftMarginTripletLoss base_model: dunzhang/stella_en_400M_v5 widget: - source_sentence: 'infocus - projector lamp - 2500 hour ( s infocus splamp 043 replacement lamp infocus certified lamp for the in11 ... ' sentences: - ' be careful , your gonna have to smash up gim after all that' - 'mann i aint talk to my sis n like 4ever hun call me imy ' - darling , i will do u one beta and personally bring sum " ship me sum lol rt i made some shrimp tonight .. curry - source_sentence: 'how''d you do that ? ? rt my home screen ' sentences: - ' indeed it is , but with my screen the way it is i won''t be able to check in soon ! i am going in on thursday' - ' awh are you at the hospital ? xxx' - 'oppa , sorry i can''t watch ss4 and i can''t meet you ' - source_sentence: that sad moment when you want ice cream but you have no money sentences: - '" no josh stay in our asb , i have cookies "' - ' was my phone off ? ?' - ' no i don''t understand it !' - source_sentence: ps ; dinner will be cooked shortly ! ) ) sentences: - 'pachelbel : canon / other 17th - century music for 3 violins ( audio cd ' - ' hard to believe you got your panties all in a twist about something again hahaha . sorry , i''ll shut up now .' - im ready to let go , move on , be happy but there will always this little shred of well maybe hell want me tomorrow . - source_sentence: '#thesexwasntgoodif he can still move' sentences: - '" my righthand be bck soon " i came back lastnightt righthand' - ' this has been going through my head all today babe ! missed seeing you sunday xxx' - ' hell yeaa it look good don''t worry .' pipeline_tag: sentence-similarity library_name: sentence-transformers --- # stella-400M-twitter-cls-tuned This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [dunzhang/stella_en_400M_v5](https://huggingface.co/dunzhang/stella_en_400M_v5). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [dunzhang/stella_en_400M_v5](https://huggingface.co/dunzhang/stella_en_400M_v5) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Dense({'in_features': 1024, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ '#thesexwasntgoodif he can still move', ' this has been going through my head all today babe ! missed seeing you sunday xxx', '" my righthand be bck soon " i came back lastnightt righthand', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 2,270,482 training samples * Columns: sentence_0 and label * Approximate statistics based on the first 1000 samples: | | sentence_0 | label | |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------| | type | string | int | | details | | | * Samples: | sentence_0 | label | |:-----------------------------------------------------------------------------------------|:---------------| | already miss the kids . such an exciting experience ! teacher for a day | 1 | | have a beautiful day every 1 god bless you ! #ktbspa | 1 | | i swear everytime i come to the barnyard something good happens #loveithere | 1 | * Loss: [BatchHardSoftMarginTripletLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchhardsoftmargintripletloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 250 - `per_device_eval_batch_size`: 250 - `num_train_epochs`: 2 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 250 - `per_device_eval_batch_size`: 250 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 2 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | Training Loss | |:------:|:-----:|:-------------:| | 0.0551 | 500 | 2.3424 | | 0.1101 | 1000 | 0.7631 | | 0.1652 | 1500 | 0.7346 | | 0.2202 | 2000 | 0.7213 | | 0.2753 | 2500 | 0.7122 | | 0.3303 | 3000 | 0.707 | | 0.3854 | 3500 | 0.7046 | | 0.4404 | 4000 | 0.7029 | | 0.4955 | 4500 | 0.701 | | 0.5505 | 5000 | 0.7 | | 0.6056 | 5500 | 0.6992 | | 0.6606 | 6000 | 0.6984 | | 0.7157 | 6500 | 0.6977 | | 0.7708 | 7000 | 0.6972 | | 0.8258 | 7500 | 0.6969 | | 0.8809 | 8000 | 0.6965 | | 0.9359 | 8500 | 0.6962 | | 0.9910 | 9000 | 0.6959 | | 1.0460 | 9500 | 0.6957 | | 1.1011 | 10000 | 0.6955 | | 1.1561 | 10500 | 0.6953 | | 1.2112 | 11000 | 0.6952 | | 1.2662 | 11500 | 0.695 | | 1.3213 | 12000 | 0.6949 | | 1.3763 | 12500 | 0.6948 | | 1.4314 | 13000 | 0.6947 | | 1.4865 | 13500 | 0.6946 | | 1.5415 | 14000 | 0.6946 | | 1.5966 | 14500 | 0.6945 | | 1.6516 | 15000 | 0.6944 | | 1.7067 | 15500 | 0.6944 | | 1.7617 | 16000 | 0.6943 | | 1.8168 | 16500 | 0.6943 | | 1.8718 | 17000 | 0.6943 | | 1.9269 | 17500 | 0.6943 | | 1.9819 | 18000 | 0.6943 | ### Framework Versions - Python: 3.11.9 - Sentence Transformers: 3.3.1 - Transformers: 4.46.3 - PyTorch: 2.5.1+cu124 - Accelerate: 1.1.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### BatchHardSoftMarginTripletLoss ```bibtex @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```