Devops-hestabit commited on
Commit
b0ed3c0
·
verified ·
1 Parent(s): c382948

Update handler.py

Browse files
Files changed (1) hide show
  1. handler.py +104 -25
handler.py CHANGED
@@ -1,31 +1,110 @@
1
- from typing import Dict, List, Any
2
- from lmdeploy import pipeline
3
- from lmdeploy.vl import load_image
4
- from lmdeploy.messages import TurbomindEngineConfig
 
 
 
5
 
6
  class EndpointHandler():
7
  def __init__(self, path):
8
- # Preload the model at initialization
9
- backend_config = TurbomindEngineConfig(model_name ="OpenGVLab/InternVL-Chat-V1-5",model_format='hf',tp=1)
10
- self.pipe = pipeline(f"{path}", backend_config=backend_config, log_level='INFO')
11
-
12
- def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
13
- """
14
- data args:
15
- inputs (:obj: `str` | `PIL.Image` | `np.array`)
16
- kwargs
17
- Return:
18
- A :obj:`list` | `dict`: will be serialized and returned
19
- """
 
 
20
  inputs = data.pop("inputs", data)
21
  image_url = inputs.get("image_url")
22
  prompt = inputs.get("prompt")
23
-
24
- if not image_url:
25
- return [{'error': 'No image URL provided'}]
26
-
27
- image = load_image(image_url)
28
-
29
-
30
- response = self.pipe((prompt, image))
31
- return {'response': response.text}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoTokenizer, AutoModel
2
+ import torch
3
+ import torchvision.transforms as T
4
+ from PIL import Image
5
+ from io import BytesIO
6
+ import requests
7
+ from torchvision.transforms.functional import InterpolationMode
8
 
9
  class EndpointHandler():
10
  def __init__(self, path):
11
+
12
+ # If you have an 80G A100 GPU, you can put the entire model on a single GPU.
13
+ self.model = AutoModel.from_pretrained(
14
+ path,
15
+ torch_dtype=torch.bfloat16,
16
+ low_cpu_mem_usage=True,
17
+ trust_remote_code=True).eval().cuda()
18
+
19
+ self.tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
20
+ self.IMAGENET_MEAN = (0.485, 0.456, 0.406)
21
+ self.IMAGENET_STD = (0.229, 0.224, 0.225)
22
+
23
+ def __call__(self, data):
24
+
25
  inputs = data.pop("inputs", data)
26
  image_url = inputs.get("image_url")
27
  prompt = inputs.get("prompt")
28
+ # set the max number of tiles in `max_num`
29
+ pixel_values = self.load_image(image_url, max_num=6).to(torch.bfloat16).cuda()
30
+ generation_config = dict(
31
+ num_beams=1,
32
+ max_new_tokens=1000,
33
+ do_sample=False,
34
+ )
35
+
36
+ # single-round single-image conversation
37
+ response = self.model.chat(self.tokenizer, pixel_values, prompt, generation_config)
38
+ return {"response": response}
39
+
40
+ def load_image(self, image_file, input_size=448, max_num=6):
41
+ response = requests.get(image_file)
42
+ image = Image.open(BytesIO(response.content)).convert('RGB')
43
+ transform = self.build_transform(input_size=input_size)
44
+ images = self.dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
45
+ pixel_values = [transform(image) for image in images]
46
+ pixel_values = torch.stack(pixel_values)
47
+ return pixel_values
48
+
49
+ def build_transform(self, input_size):
50
+ MEAN, STD = self.IMAGENET_MEAN, self.IMAGENET_STD
51
+ transform = T.Compose([
52
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
53
+ T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
54
+ T.ToTensor(),
55
+ T.Normalize(mean=MEAN, std=STD)
56
+ ])
57
+ return transform
58
+
59
+ def dynamic_preprocess(self, image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
60
+ orig_width, orig_height = image.size
61
+ aspect_ratio = orig_width / orig_height
62
+
63
+ # calculate the existing image aspect ratio
64
+ target_ratios = set(
65
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
66
+ i * j <= max_num and i * j >= min_num)
67
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
68
+
69
+ # find the closest aspect ratio to the target
70
+ target_aspect_ratio = self.find_closest_aspect_ratio(
71
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
72
+
73
+ # calculate the target width and height
74
+ target_width = image_size * target_aspect_ratio[0]
75
+ target_height = image_size * target_aspect_ratio[1]
76
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
77
+
78
+ # resize the image
79
+ resized_img = image.resize((target_width, target_height))
80
+ processed_images = []
81
+ for i in range(blocks):
82
+ box = (
83
+ (i % (target_width // image_size)) * image_size,
84
+ (i // (target_width // image_size)) * image_size,
85
+ ((i % (target_width // image_size)) + 1) * image_size,
86
+ ((i // (target_width // image_size)) + 1) * image_size
87
+ )
88
+ # split the image
89
+ split_img = resized_img.crop(box)
90
+ processed_images.append(split_img)
91
+ assert len(processed_images) == blocks
92
+ if use_thumbnail and len(processed_images) != 1:
93
+ thumbnail_img = image.resize((image_size, image_size))
94
+ processed_images.append(thumbnail_img)
95
+ return processed_images
96
+
97
+ def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size):
98
+ best_ratio_diff = float('inf')
99
+ best_ratio = (1, 1)
100
+ area = width * height
101
+ for ratio in target_ratios:
102
+ target_aspect_ratio = ratio[0] / ratio[1]
103
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
104
+ if ratio_diff < best_ratio_diff:
105
+ best_ratio_diff = ratio_diff
106
+ best_ratio = ratio
107
+ elif ratio_diff == best_ratio_diff:
108
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
109
+ best_ratio = ratio
110
+ return best_ratio