--- base_model: RyanYr/llama32-3b-it_CoT-it_SFT_BoN_iter1 library_name: transformers model_name: llama32-3b-it_CoT-it_SFT_BoN_iter1 tags: - generated_from_trainer - trl - sft - llama-cpp - text-generation-inference licence: license license: mit --- # Devarui379/llama32-3b-it_CoT-it_SFT_BoN_iter1-Q8_0-GGUF This model was converted to GGUF format Refer to the [original model card](https://huggingface.co/RyanYr/llama32-3b-it_CoT-it_SFT_BoN_iter1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Devarui379/llama32-3b-it_CoT-it_SFT_BoN_iter1-Q8_0-GGUF --hf-file llama32-3b-it_cot-it_sft_bon_iter1-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Devarui379/llama32-3b-it_CoT-it_SFT_BoN_iter1-Q8_0-GGUF --hf-file llama32-3b-it_cot-it_sft_bon_iter1-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Devarui379/llama32-3b-it_CoT-it_SFT_BoN_iter1-Q8_0-GGUF --hf-file llama32-3b-it_cot-it_sft_bon_iter1-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Devarui379/llama32-3b-it_CoT-it_SFT_BoN_iter1-Q8_0-GGUF --hf-file llama32-3b-it_cot-it_sft_bon_iter1-q8_0.gguf -c 2048 ```