--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - recall - precision model-index: - name: Armature_Defect_Detection_Resin results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.76 - name: F1 type: f1 value: 0.76 - name: Recall type: recall value: 0.76 - name: Precision type: precision value: 0.76 --- # Armature_Defect_Detection_Resin This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4978 - Accuracy: 0.76 - F1: 0.76 - Recall: 0.76 - Precision: 0.76 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----:|:------:|:---------:| | No log | 0.57 | 1 | 0.7205 | 0.44 | 0.44 | 0.44 | 0.44 | | No log | 1.57 | 2 | 0.5926 | 0.6 | 0.6 | 0.6 | 0.6 | | No log | 2.57 | 3 | 0.4978 | 0.76 | 0.76 | 0.76 | 0.76 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1