--- license: apache-2.0 datasets: - zs389/isic2016 - heroza/isic2017_classification language: - en metrics: - accuracy - precision - recall - f1 base_model: - Sadiksmart0/unet - glasses/densenet201 pipeline_tag: image-segmentation library: tensorflow model-index: - name: Skin-Lesion-Segmentation results: - task: type: image-segmentation dataset: name: isic2016 type: image metrics: - name: accuracy type: float value: 98.04 - name: precision type: float value: 97.09 - name: IoU (jaccard index) type: float value: 90.86 - name: F1-score (dice coefficient) type: float value: 94.78 - task: type: image-segmentation dataset: name: isic2017 type: image metrics: - name: accuracy type: float value: 93.06 - name: precision type: float value: 98.63 - name: IoU (jaccard index) type: float value: 89.97 - name: F1-score (dice coefficient) type: float value: 94.35 tags: - tensorflow - keras --- A precise segmentation model trained on the ISIC2016 and 2017 datasets. Throws an accuracy of 98.06% and a Jaccard Index of 90.86. Based on the U-Net architecture with a DenseNet201 backbone.