|
import os |
|
from collections import OrderedDict |
|
from tqdm import tqdm |
|
import torch.distributed |
|
|
|
from torch.nn.init import trunc_normal_ |
|
|
|
import copy |
|
|
|
from typing import List, Any, Optional, Tuple, Type, Union |
|
|
|
import numpy as np |
|
|
|
import math |
|
import warnings |
|
from functools import partial |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn, Tensor |
|
|
|
|
|
NO_OBJ_SCORE = -1024.0 |
|
|
|
warnings.simplefilter(action="ignore", category=FutureWarning) |
|
|
|
OLD_GPU, USE_FLASH_ATTN, MATH_KERNEL_ON = True, True, True |
|
|
|
def load_checkpoint_with_prefix(filename, prefix=None, map_location='cpu', logger='current'): |
|
"""Load partial pretrained model with specific prefix. |
|
|
|
Args: |
|
prefix (str): The prefix of sub-module. |
|
filename (str): Accept local filepath, URL, ``torchvision://xxx``, |
|
``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for |
|
details. |
|
map_location (str | None): Same as :func:`torch.load`. |
|
Defaults to None. |
|
logger: logger |
|
|
|
Returns: |
|
dict or OrderedDict: The loaded checkpoint. |
|
""" |
|
checkpoint = torch.load(filename, map_location=map_location) |
|
|
|
if 'state_dict' in checkpoint: |
|
state_dict = checkpoint['state_dict'] |
|
elif 'model' in checkpoint: |
|
state_dict = checkpoint['model'] |
|
else: |
|
state_dict = checkpoint |
|
if not prefix: |
|
return state_dict |
|
if not prefix.endswith('.'): |
|
prefix += '.' |
|
prefix_len = len(prefix) |
|
|
|
state_dict = { |
|
k[prefix_len:]: v |
|
for k, v in state_dict.items() if k.startswith(prefix) |
|
} |
|
|
|
assert state_dict, f'{prefix} is not in the pretrained model' |
|
return state_dict |
|
|
|
def load_state_dict_to_model(model, state_dict, logger='current'): |
|
missing_keys, unexpected_keys = model.load_state_dict(state_dict) |
|
if missing_keys: |
|
print(missing_keys) |
|
raise RuntimeError() |
|
if unexpected_keys: |
|
print(unexpected_keys) |
|
raise RuntimeError() |
|
print("Loaded checkpoint successfully") |
|
|
|
class SAM2(nn.Module): |
|
def __init__( |
|
self, |
|
ckpt_path: str = None, |
|
): |
|
super().__init__() |
|
|
|
image_encoder = self.build_image_encoder() |
|
memory_attention = self.build_memory_attention() |
|
memory_encoder = self.build_memory_encoder() |
|
sam2_model = SAM2VideoPredictor( |
|
image_encoder=image_encoder, |
|
memory_attention=memory_attention, |
|
memory_encoder=memory_encoder, |
|
num_maskmem = 7, |
|
image_size = 1024, |
|
|
|
sigmoid_scale_for_mem_enc = 20.0, |
|
sigmoid_bias_for_mem_enc = -10.0, |
|
use_mask_input_as_output_without_sam = True, |
|
|
|
directly_add_no_mem_embed = True, |
|
|
|
use_high_res_features_in_sam = True, |
|
|
|
multimask_output_in_sam = True, |
|
|
|
iou_prediction_use_sigmoid = True, |
|
|
|
use_obj_ptrs_in_encoder = True, |
|
add_tpos_enc_to_obj_ptrs = False, |
|
only_obj_ptrs_in_the_past_for_eval = True, |
|
|
|
pred_obj_scores = True, |
|
pred_obj_scores_mlp = True, |
|
fixed_no_obj_ptr = True, |
|
|
|
multimask_output_for_tracking = True, |
|
use_multimask_token_for_obj_ptr = True, |
|
multimask_min_pt_num = 0, |
|
multimask_max_pt_num = 1, |
|
use_mlp_for_obj_ptr_proj = True, |
|
|
|
compile_image_encoder = False, |
|
sam_mask_decoder_extra_args={ |
|
'dynamic_multimask_via_stability':True, |
|
'dynamic_multimask_stability_delta': 0.05, |
|
'dynamic_multimask_stability_thresh': 0.98, |
|
} |
|
) |
|
if ckpt_path is not None: |
|
state_dict = load_checkpoint_with_prefix(ckpt_path) |
|
load_state_dict_to_model(sam2_model, state_dict) |
|
|
|
self.sam2_model = sam2_model |
|
|
|
self.hidden_dim = self.sam2_model.hidden_dim |
|
|
|
self.img_mean = (0.485, 0.456, 0.406) |
|
self.img_std = (0.229, 0.224, 0.225) |
|
|
|
def build_image_encoder(self): |
|
def build_trunk(): |
|
embed_dim = 144 |
|
num_heads = 2 |
|
stages = [2, 6, 36, 4] |
|
global_att_blocks = [23, 33, 43] |
|
window_pos_embed_bkg_spatial_size = [7, 7] |
|
window_spec = [8, 4, 16, 8] |
|
ret = Hiera( |
|
embed_dim=embed_dim, |
|
num_heads=num_heads, |
|
stages=stages, |
|
global_att_blocks=global_att_blocks, |
|
window_pos_embed_bkg_spatial_size=window_pos_embed_bkg_spatial_size, |
|
window_spec=window_spec, |
|
) |
|
return ret |
|
def build_neck(): |
|
def build_position_encoding(): |
|
num_pos_feats = 256 |
|
normalize = True |
|
scale = None |
|
temperature = 10000 |
|
ret = PositionEmbeddingSine( |
|
num_pos_feats=num_pos_feats, |
|
normalize=normalize, |
|
scale=scale, |
|
temperature=temperature, |
|
) |
|
return ret |
|
d_model = 256 |
|
backbone_channel_list = [1152, 576, 288, 144] |
|
fpn_top_down_levels = [2, 3] |
|
fpn_interp_model = 'nearest' |
|
position_encoding = build_position_encoding() |
|
ret = FpnNeck( |
|
d_model=d_model, |
|
position_encoding=position_encoding, |
|
backbone_channel_list=backbone_channel_list, |
|
fpn_top_down_levels=fpn_top_down_levels, |
|
fpn_interp_model=fpn_interp_model, |
|
) |
|
return ret |
|
scalp = 1 |
|
trunk = build_trunk() |
|
neck = build_neck() |
|
ret = ImageEncoder(scalp=scalp, trunk=trunk, neck=neck) |
|
return ret |
|
|
|
def build_memory_attention(self): |
|
def build_layer(): |
|
def build_self_attention(): |
|
rope_theta = 10000.0 |
|
feat_sizes = [32, 32] |
|
embedding_dim = 256 |
|
num_heads = 1 |
|
downsample_rate = 1 |
|
dropout = 0.1 |
|
ret = RoPEAttention( |
|
rope_theta=rope_theta, |
|
feat_sizes=feat_sizes, |
|
embedding_dim=embedding_dim, |
|
num_heads=num_heads, |
|
downsample_rate=downsample_rate, |
|
dropout=dropout |
|
) |
|
return ret |
|
def build_cross_attention(): |
|
rope_theta = 10000.0 |
|
feat_sizes = [32, 32] |
|
rope_k_repeat = True |
|
embedding_dim = 256 |
|
num_heads = 1 |
|
downsample_rate = 1 |
|
dropout = 0.1 |
|
kv_in_dim = 64 |
|
ret = RoPEAttention( |
|
rope_theta=rope_theta, |
|
feat_sizes=feat_sizes, |
|
rope_k_repeat=rope_k_repeat, |
|
embedding_dim=embedding_dim, |
|
num_heads=num_heads, |
|
downsample_rate=downsample_rate, |
|
dropout=dropout, |
|
kv_in_dim=kv_in_dim |
|
) |
|
return ret |
|
activation = 'relu' |
|
dim_feedforward = 2048 |
|
dropout = 0.1 |
|
pos_enc_at_attn = False |
|
d_model = 256 |
|
pos_enc_at_cross_attn_keys = True |
|
pos_enc_at_cross_attn_queries = False |
|
self_attention = build_self_attention() |
|
cross_attention = build_cross_attention() |
|
ret = MemoryAttentionLayer( |
|
activation=activation, |
|
dim_feedforward=dim_feedforward, |
|
dropout=dropout, |
|
pos_enc_at_attn=pos_enc_at_attn, |
|
d_model=d_model, |
|
pos_enc_at_cross_attn_queries=pos_enc_at_cross_attn_queries, |
|
pos_enc_at_cross_attn_keys=pos_enc_at_cross_attn_keys, |
|
self_attention=self_attention, |
|
cross_attention=cross_attention, |
|
) |
|
return ret |
|
d_model = 256 |
|
pos_enc_at_input = True |
|
num_layers = 4 |
|
layer = build_layer() |
|
ret = MemoryAttention( |
|
d_model=d_model, |
|
pos_enc_at_input=pos_enc_at_input, |
|
num_layers=num_layers, |
|
layer=layer, |
|
) |
|
return ret |
|
|
|
def build_memory_encoder(self): |
|
def build_position_encoding(): |
|
num_pos_feats = 64 |
|
normalize = True |
|
scale = None |
|
temperature = 10000 |
|
ret = PositionEmbeddingSine( |
|
num_pos_feats=num_pos_feats, |
|
normalize=normalize, |
|
scale=scale, |
|
temperature=temperature, |
|
) |
|
return ret |
|
|
|
def build_mask_downsampler(): |
|
kernel_size = 3 |
|
stride = 2 |
|
padding = 1 |
|
ret = MaskDownSampler( |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
) |
|
return ret |
|
|
|
def build_fuser(): |
|
def build_layer(): |
|
dim = 256 |
|
kernel_size = 7 |
|
padding = 3 |
|
layer_scale_init_value = 1e-6 |
|
use_dwconv = True |
|
ret = CXBlock( |
|
dim=dim, kernel_size=kernel_size, |
|
padding=padding, layer_scale_init_value=layer_scale_init_value, |
|
use_dwconv=use_dwconv, |
|
) |
|
return ret |
|
|
|
num_layers = 2 |
|
layer = build_layer() |
|
ret = Fuser( |
|
layer=layer, |
|
num_layers=num_layers |
|
) |
|
return ret |
|
|
|
out_dim = 64 |
|
position_encoding = build_position_encoding() |
|
mask_downsampler = build_mask_downsampler() |
|
fuser = build_fuser() |
|
ret = MemoryEncoder( |
|
out_dim=out_dim, |
|
position_encoding=position_encoding, |
|
mask_downsampler=mask_downsampler, |
|
fuser=fuser, |
|
) |
|
return ret |
|
|
|
def inject_language_embd(self, inference_state, language_embd): |
|
num_frame = len(language_embd) |
|
num_obj = len(language_embd[0]) |
|
mask_out = [] |
|
for frame_idx in range(num_frame): |
|
frame_mask_out = [] |
|
for obj_idx in range(num_obj): |
|
_language_embd = language_embd[frame_idx][obj_idx][None][None] |
|
_, _, out_mask_logits = self.sam2_model.add_language_embd(inference_state, frame_idx, obj_idx + 100, _language_embd) |
|
frame_mask_out.append(out_mask_logits) |
|
frame_mask_out = torch.cat(frame_mask_out, dim=1) |
|
mask_out.append(frame_mask_out) |
|
mask_out = torch.cat(mask_out, dim=0) |
|
return mask_out |
|
|
|
|
|
def language_embd_inference(self, inference_state, language_embd): |
|
num_frame = len(language_embd) |
|
num_obj = len(language_embd[0]) |
|
mask_out = [] |
|
with torch.autocast(device_type="cuda", dtype=torch.bfloat16): |
|
for frame_idx in range(num_frame): |
|
frame_mask_out = [] |
|
|
|
for obj_idx in range(num_obj): |
|
_language_embd = language_embd[frame_idx][obj_idx][None][None] |
|
_, _, out_mask_logits = self.sam2_model.add_language_embd( |
|
inference_state, |
|
frame_idx, |
|
obj_idx + 100, |
|
_language_embd, |
|
inference=True, |
|
) |
|
frame_mask_out.append(out_mask_logits) |
|
frame_mask_out = torch.cat(frame_mask_out, dim=1) |
|
mask_out.append(frame_mask_out) |
|
|
|
|
|
mask_out = [] |
|
for out_frame_idx, out_obj_ids, out_mask_logits in self.sam2_model.propagate_in_video(inference_state): |
|
mask_out.append(out_mask_logits) |
|
mask_out = torch.cat(mask_out, dim=0) |
|
return mask_out |
|
|
|
def get_sam2_embeddings(self, images): |
|
return self.sam2_model.init_state(images) |
|
|
|
def forward(self, batch): |
|
raise NotImplementedError |
|
|
|
def preprocess_image(self, image: torch.Tensor, dtype=torch.bfloat16) -> torch.Tensor: |
|
image = image / 255. |
|
|
|
img_mean = torch.tensor(self.img_mean, dtype=dtype, device=image.device)[:, None, None] |
|
img_std = torch.tensor(self.img_std, dtype=dtype, device=image.device)[:, None, None] |
|
image -= img_mean |
|
image /= img_std |
|
|
|
return image |
|
|
|
class MemoryAttentionLayer(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
activation: str, |
|
cross_attention: nn.Module, |
|
d_model: int, |
|
dim_feedforward: int, |
|
dropout: float, |
|
pos_enc_at_attn: bool, |
|
pos_enc_at_cross_attn_keys: bool, |
|
pos_enc_at_cross_attn_queries: bool, |
|
self_attention: nn.Module, |
|
): |
|
super().__init__() |
|
self.d_model = d_model |
|
self.dim_feedforward = dim_feedforward |
|
self.dropout_value = dropout |
|
self.self_attn = self_attention |
|
self.cross_attn_image = cross_attention |
|
|
|
|
|
self.linear1 = nn.Linear(d_model, dim_feedforward) |
|
self.dropout = nn.Dropout(dropout) |
|
self.linear2 = nn.Linear(dim_feedforward, d_model) |
|
|
|
self.norm1 = nn.LayerNorm(d_model) |
|
self.norm2 = nn.LayerNorm(d_model) |
|
self.norm3 = nn.LayerNorm(d_model) |
|
self.dropout1 = nn.Dropout(dropout) |
|
self.dropout2 = nn.Dropout(dropout) |
|
self.dropout3 = nn.Dropout(dropout) |
|
|
|
self.activation_str = activation |
|
self.activation = get_activation_fn(activation) |
|
|
|
|
|
self.pos_enc_at_attn = pos_enc_at_attn |
|
self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries |
|
self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys |
|
|
|
def _forward_sa(self, tgt, query_pos): |
|
|
|
tgt2 = self.norm1(tgt) |
|
q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2 |
|
tgt2 = self.self_attn(q, k, v=tgt2) |
|
tgt = tgt + self.dropout1(tgt2) |
|
return tgt |
|
|
|
def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0): |
|
kwds = {} |
|
if num_k_exclude_rope > 0: |
|
assert isinstance(self.cross_attn_image, RoPEAttention) |
|
kwds = {"num_k_exclude_rope": num_k_exclude_rope} |
|
|
|
|
|
tgt2 = self.norm2(tgt) |
|
tgt2 = self.cross_attn_image( |
|
q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2, |
|
k=memory + pos if self.pos_enc_at_cross_attn_keys else memory, |
|
v=memory, |
|
**kwds, |
|
) |
|
tgt = tgt + self.dropout2(tgt2) |
|
return tgt |
|
|
|
def forward( |
|
self, |
|
tgt, |
|
memory, |
|
pos: Optional[Tensor] = None, |
|
query_pos: Optional[Tensor] = None, |
|
num_k_exclude_rope: int = 0, |
|
) -> torch.Tensor: |
|
|
|
|
|
tgt = self._forward_sa(tgt, query_pos) |
|
tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope) |
|
|
|
tgt2 = self.norm3(tgt) |
|
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) |
|
tgt = tgt + self.dropout3(tgt2) |
|
return tgt |
|
|
|
|
|
class MemoryAttention(nn.Module): |
|
def __init__( |
|
self, |
|
d_model: int, |
|
pos_enc_at_input: bool, |
|
layer: nn.Module, |
|
num_layers: int, |
|
batch_first: bool = True, |
|
): |
|
super().__init__() |
|
self.d_model = d_model |
|
self.layers = get_clones(layer, num_layers) |
|
self.num_layers = num_layers |
|
self.norm = nn.LayerNorm(d_model) |
|
self.pos_enc_at_input = pos_enc_at_input |
|
self.batch_first = batch_first |
|
|
|
def forward( |
|
self, |
|
curr: torch.Tensor, |
|
memory: torch.Tensor, |
|
curr_pos: Optional[Tensor] = None, |
|
memory_pos: Optional[Tensor] = None, |
|
num_obj_ptr_tokens: int = 0, |
|
): |
|
if isinstance(curr, list): |
|
assert isinstance(curr_pos, list) |
|
assert len(curr) == len(curr_pos) == 1 |
|
curr, curr_pos = ( |
|
curr[0], |
|
curr_pos[0], |
|
) |
|
|
|
assert ( |
|
curr.shape[1] == memory.shape[1] |
|
), "Batch size must be the same for curr and memory" |
|
|
|
output = curr |
|
if self.pos_enc_at_input and curr_pos is not None: |
|
output = output + 0.1 * curr_pos |
|
|
|
if self.batch_first: |
|
|
|
output = output.transpose(0, 1) |
|
curr_pos = curr_pos.transpose(0, 1) |
|
memory = memory.transpose(0, 1) |
|
memory_pos = memory_pos.transpose(0, 1) |
|
|
|
for layer in self.layers: |
|
kwds = {} |
|
if isinstance(layer.cross_attn_image, RoPEAttention): |
|
kwds = {"num_k_exclude_rope": num_obj_ptr_tokens} |
|
|
|
output = layer( |
|
tgt=output, |
|
memory=memory, |
|
pos=memory_pos, |
|
query_pos=curr_pos, |
|
**kwds, |
|
) |
|
normed_output = self.norm(output) |
|
|
|
if self.batch_first: |
|
|
|
normed_output = normed_output.transpose(0, 1) |
|
curr_pos = curr_pos.transpose(0, 1) |
|
|
|
return normed_output |
|
|
|
class MaskDownSampler(nn.Module): |
|
""" |
|
Progressively downsample a mask by total_stride, each time by stride. |
|
Note that LayerNorm is applied per *token*, like in ViT. |
|
|
|
With each downsample (by a factor stride**2), channel capacity increases by the same factor. |
|
In the end, we linearly project to embed_dim channels. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
embed_dim=256, |
|
kernel_size=4, |
|
stride=4, |
|
padding=0, |
|
total_stride=16, |
|
activation=nn.GELU, |
|
): |
|
super().__init__() |
|
num_layers = int(math.log2(total_stride) // math.log2(stride)) |
|
assert stride**num_layers == total_stride |
|
self.encoder = nn.Sequential() |
|
mask_in_chans, mask_out_chans = 1, 1 |
|
for _ in range(num_layers): |
|
mask_out_chans = mask_in_chans * (stride**2) |
|
self.encoder.append( |
|
nn.Conv2d( |
|
mask_in_chans, |
|
mask_out_chans, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
) |
|
) |
|
self.encoder.append(LayerNorm2d(mask_out_chans)) |
|
self.encoder.append(activation()) |
|
mask_in_chans = mask_out_chans |
|
|
|
self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1)) |
|
|
|
def forward(self, x): |
|
return self.encoder(x) |
|
|
|
|
|
|
|
class CXBlock(nn.Module): |
|
r"""ConvNeXt Block. There are two equivalent implementations: |
|
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) |
|
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back |
|
We use (2) as we find it slightly faster in PyTorch |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
drop_path (float): Stochastic depth rate. Default: 0.0 |
|
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
kernel_size=7, |
|
padding=3, |
|
drop_path=0.0, |
|
layer_scale_init_value=1e-6, |
|
use_dwconv=True, |
|
): |
|
super().__init__() |
|
self.dwconv = nn.Conv2d( |
|
dim, |
|
dim, |
|
kernel_size=kernel_size, |
|
padding=padding, |
|
groups=dim if use_dwconv else 1, |
|
) |
|
self.norm = LayerNorm2d(dim, eps=1e-6) |
|
self.pwconv1 = nn.Linear( |
|
dim, 4 * dim |
|
) |
|
self.act = nn.GELU() |
|
self.pwconv2 = nn.Linear(4 * dim, dim) |
|
|
|
self.g_weight = ( |
|
nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True) |
|
if layer_scale_init_value > 0 |
|
else None |
|
) |
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
|
|
def forward(self, x): |
|
input = x |
|
x = self.dwconv(x) |
|
x = self.norm(x) |
|
x = x.permute(0, 2, 3, 1) |
|
x = self.pwconv1(x) |
|
x = self.act(x) |
|
x = self.pwconv2(x) |
|
if self.g_weight is not None: |
|
x = self.g_weight * x |
|
x = x.permute(0, 3, 1, 2) |
|
|
|
x = input + self.drop_path(x) |
|
return x |
|
|
|
|
|
class Fuser(nn.Module): |
|
def __init__(self, layer, num_layers, dim=None, input_projection=False): |
|
super().__init__() |
|
self.proj = nn.Identity() |
|
self.layers = get_clones(layer, num_layers) |
|
|
|
if input_projection: |
|
assert dim is not None |
|
self.proj = nn.Conv2d(dim, dim, kernel_size=1) |
|
|
|
def forward(self, x): |
|
|
|
x = self.proj(x) |
|
for layer in self.layers: |
|
x = layer(x) |
|
return x |
|
|
|
|
|
class MemoryEncoder(nn.Module): |
|
def __init__( |
|
self, |
|
out_dim, |
|
mask_downsampler, |
|
fuser, |
|
position_encoding, |
|
in_dim=256, |
|
): |
|
super().__init__() |
|
|
|
self.mask_downsampler = mask_downsampler |
|
|
|
self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1) |
|
self.fuser = fuser |
|
self.position_encoding = position_encoding |
|
self.out_proj = nn.Identity() |
|
if out_dim != in_dim: |
|
self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1) |
|
|
|
def forward( |
|
self, |
|
pix_feat: torch.Tensor, |
|
masks: torch.Tensor, |
|
skip_mask_sigmoid: bool = False, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
|
|
|
if not skip_mask_sigmoid: |
|
masks = F.sigmoid(masks) |
|
masks = self.mask_downsampler(masks) |
|
|
|
|
|
|
|
pix_feat = pix_feat.to(masks.device) |
|
|
|
x = self.pix_feat_proj(pix_feat) |
|
x = x + masks |
|
x = self.fuser(x) |
|
x = self.out_proj(x) |
|
|
|
pos = self.position_encoding(x).to(x.dtype) |
|
|
|
return {"vision_features": x, "vision_pos_enc": [pos]} |
|
|
|
|
|
class ImageEncoder(nn.Module): |
|
def __init__( |
|
self, |
|
trunk: nn.Module, |
|
neck: nn.Module, |
|
scalp: int = 0, |
|
): |
|
super().__init__() |
|
self.trunk = trunk |
|
self.neck = neck |
|
self.scalp = scalp |
|
assert ( |
|
self.trunk.channel_list == self.neck.backbone_channel_list |
|
), f"Channel dims of trunk and neck do not match. Trunk: {self.trunk.channel_list}, neck: {self.neck.backbone_channel_list}" |
|
|
|
def forward(self, sample: torch.Tensor): |
|
|
|
features, pos = self.neck(self.trunk(sample)) |
|
if self.scalp > 0: |
|
|
|
features, pos = features[: -self.scalp], pos[: -self.scalp] |
|
|
|
src = features[-1] |
|
output = { |
|
"vision_features": src, |
|
"vision_pos_enc": pos, |
|
"backbone_fpn": features, |
|
} |
|
return output |
|
|
|
|
|
class FpnNeck(nn.Module): |
|
""" |
|
A modified variant of Feature Pyramid Network (FPN) neck |
|
(we remove output conv and also do bicubic interpolation similar to ViT |
|
pos embed interpolation) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
position_encoding: nn.Module, |
|
d_model: int, |
|
backbone_channel_list: List[int], |
|
kernel_size: int = 1, |
|
stride: int = 1, |
|
padding: int = 0, |
|
fpn_interp_model: str = "bilinear", |
|
fuse_type: str = "sum", |
|
fpn_top_down_levels: Optional[List[int]] = None, |
|
): |
|
"""Initialize the neck |
|
:param trunk: the backbone |
|
:param position_encoding: the positional encoding to use |
|
:param d_model: the dimension of the model |
|
:param neck_norm: the normalization to use |
|
""" |
|
super().__init__() |
|
self.position_encoding = position_encoding |
|
self.convs = nn.ModuleList() |
|
self.backbone_channel_list = backbone_channel_list |
|
for dim in backbone_channel_list: |
|
current = nn.Sequential() |
|
current.add_module( |
|
"conv", |
|
nn.Conv2d( |
|
in_channels=dim, |
|
out_channels=d_model, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
), |
|
) |
|
|
|
self.convs.append(current) |
|
self.fpn_interp_model = fpn_interp_model |
|
assert fuse_type in ["sum", "avg"] |
|
self.fuse_type = fuse_type |
|
|
|
|
|
|
|
|
|
|
|
if fpn_top_down_levels is None: |
|
|
|
fpn_top_down_levels = range(len(self.convs)) |
|
self.fpn_top_down_levels = list(fpn_top_down_levels) |
|
|
|
def forward(self, xs: List[torch.Tensor]): |
|
|
|
out = [None] * len(self.convs) |
|
pos = [None] * len(self.convs) |
|
assert len(xs) == len(self.convs) |
|
|
|
|
|
prev_features = None |
|
|
|
n = len(self.convs) - 1 |
|
for i in range(n, -1, -1): |
|
x = xs[i] |
|
lateral_features = self.convs[n - i](x) |
|
if i in self.fpn_top_down_levels and prev_features is not None: |
|
top_down_features = F.interpolate( |
|
prev_features.to(dtype=torch.float32), |
|
scale_factor=2.0, |
|
mode=self.fpn_interp_model, |
|
align_corners=( |
|
None if self.fpn_interp_model == "nearest" else False |
|
), |
|
antialias=False, |
|
) |
|
prev_features = lateral_features + top_down_features |
|
if self.fuse_type == "avg": |
|
prev_features /= 2 |
|
else: |
|
prev_features = lateral_features |
|
x_out = prev_features |
|
out[i] = x_out |
|
pos[i] = self.position_encoding(x_out).to(x_out.dtype) |
|
|
|
return out, pos |
|
|
|
def window_partition(x, window_size): |
|
""" |
|
Partition into non-overlapping windows with padding if needed. |
|
Args: |
|
x (tensor): input tokens with [B, H, W, C]. |
|
window_size (int): window size. |
|
Returns: |
|
windows: windows after partition with [B * num_windows, window_size, window_size, C]. |
|
(Hp, Wp): padded height and width before partition |
|
""" |
|
B, H, W, C = x.shape |
|
|
|
pad_h = (window_size - H % window_size) % window_size |
|
pad_w = (window_size - W % window_size) % window_size |
|
if pad_h > 0 or pad_w > 0: |
|
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) |
|
Hp, Wp = H + pad_h, W + pad_w |
|
|
|
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) |
|
windows = ( |
|
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) |
|
) |
|
return windows, (Hp, Wp) |
|
|
|
|
|
def window_unpartition(windows, window_size, pad_hw, hw): |
|
""" |
|
Window unpartition into original sequences and removing padding. |
|
Args: |
|
x (tensor): input tokens with [B * num_windows, window_size, window_size, C]. |
|
window_size (int): window size. |
|
pad_hw (Tuple): padded height and width (Hp, Wp). |
|
hw (Tuple): original height and width (H, W) before padding. |
|
Returns: |
|
x: unpartitioned sequences with [B, H, W, C]. |
|
""" |
|
Hp, Wp = pad_hw |
|
H, W = hw |
|
B = windows.shape[0] // (Hp * Wp // window_size // window_size) |
|
x = windows.view( |
|
B, Hp // window_size, Wp // window_size, window_size, window_size, -1 |
|
) |
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) |
|
|
|
if Hp > H or Wp > W: |
|
x = x[:, :H, :W, :].contiguous() |
|
return x |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" |
|
Image to Patch Embedding. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
kernel_size: Tuple[int, ...] = (7, 7), |
|
stride: Tuple[int, ...] = (4, 4), |
|
padding: Tuple[int, ...] = (3, 3), |
|
in_chans: int = 3, |
|
embed_dim: int = 768, |
|
): |
|
""" |
|
Args: |
|
kernel_size (Tuple): kernel size of the projection layer. |
|
stride (Tuple): stride of the projection layer. |
|
padding (Tuple): padding size of the projection layer. |
|
in_chans (int): Number of input image channels. |
|
embed_dim (int): embed_dim (int): Patch embedding dimension. |
|
""" |
|
super().__init__() |
|
self.proj = nn.Conv2d( |
|
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.proj(x) |
|
|
|
x = x.permute(0, 2, 3, 1) |
|
return x |
|
|
|
def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module = None) -> torch.Tensor: |
|
if pool is None: |
|
return x |
|
|
|
x = x.permute(0, 3, 1, 2) |
|
x = pool(x) |
|
|
|
x = x.permute(0, 2, 3, 1) |
|
if norm: |
|
x = norm(x) |
|
|
|
return x |
|
|
|
|
|
class MultiScaleAttention(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
dim_out: int, |
|
num_heads: int, |
|
q_pool: nn.Module = None, |
|
): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.dim_out = dim_out |
|
|
|
self.num_heads = num_heads |
|
head_dim = dim_out // num_heads |
|
self.scale = head_dim**-0.5 |
|
|
|
self.q_pool = q_pool |
|
self.qkv = nn.Linear(dim, dim_out * 3) |
|
self.proj = nn.Linear(dim_out, dim_out) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
B, H, W, _ = x.shape |
|
|
|
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1) |
|
|
|
q, k, v = torch.unbind(qkv, 2) |
|
|
|
|
|
if self.q_pool: |
|
q = do_pool(q.reshape(B, H, W, -1), self.q_pool) |
|
H, W = q.shape[1:3] |
|
q = q.reshape(B, H * W, self.num_heads, -1) |
|
|
|
|
|
x = F.scaled_dot_product_attention( |
|
q.transpose(1, 2), |
|
k.transpose(1, 2), |
|
v.transpose(1, 2), |
|
) |
|
|
|
x = x.transpose(1, 2) |
|
x = x.reshape(B, H, W, -1) |
|
|
|
x = self.proj(x) |
|
|
|
return x |
|
|
|
|
|
class MultiScaleBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
dim_out: int, |
|
num_heads: int, |
|
mlp_ratio: float = 4.0, |
|
drop_path: float = 0.0, |
|
norm_layer: Union[nn.Module, str] = "LayerNorm", |
|
q_stride: Tuple[int, int] = None, |
|
act_layer: nn.Module = nn.GELU, |
|
window_size: int = 0, |
|
): |
|
super().__init__() |
|
|
|
if isinstance(norm_layer, str): |
|
norm_layer = partial(getattr(nn, norm_layer), eps=1e-6) |
|
|
|
self.dim = dim |
|
self.dim_out = dim_out |
|
self.norm1 = norm_layer(dim) |
|
|
|
self.window_size = window_size |
|
|
|
self.pool, self.q_stride = None, q_stride |
|
if self.q_stride: |
|
self.pool = nn.MaxPool2d( |
|
kernel_size=q_stride, stride=q_stride, ceil_mode=False |
|
) |
|
|
|
self.attn = MultiScaleAttention( |
|
dim, |
|
dim_out, |
|
num_heads=num_heads, |
|
q_pool=self.pool, |
|
) |
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
|
|
self.norm2 = norm_layer(dim_out) |
|
self.mlp = MLP( |
|
dim_out, |
|
int(dim_out * mlp_ratio), |
|
dim_out, |
|
num_layers=2, |
|
activation=act_layer, |
|
) |
|
|
|
if dim != dim_out: |
|
self.proj = nn.Linear(dim, dim_out) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
shortcut = x |
|
x = self.norm1(x) |
|
|
|
|
|
if self.dim != self.dim_out: |
|
shortcut = do_pool(self.proj(x), self.pool) |
|
|
|
|
|
window_size = self.window_size |
|
if window_size > 0: |
|
H, W = x.shape[1], x.shape[2] |
|
x, pad_hw = window_partition(x, window_size) |
|
|
|
|
|
x = self.attn(x) |
|
if self.q_stride: |
|
|
|
window_size = self.window_size // self.q_stride[0] |
|
H, W = shortcut.shape[1:3] |
|
|
|
pad_h = (window_size - H % window_size) % window_size |
|
pad_w = (window_size - W % window_size) % window_size |
|
pad_hw = (H + pad_h, W + pad_w) |
|
|
|
|
|
if self.window_size > 0: |
|
x = window_unpartition(x, window_size, pad_hw, (H, W)) |
|
|
|
x = shortcut + self.drop_path(x) |
|
|
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
class Hiera(nn.Module): |
|
""" |
|
Reference: https://arxiv.org/abs/2306.00989 |
|
""" |
|
|
|
def __init__( |
|
self, |
|
embed_dim: int = 96, |
|
num_heads: int = 1, |
|
drop_path_rate: float = 0.0, |
|
q_pool: int = 3, |
|
q_stride: Tuple[int, int] = (2, 2), |
|
stages: Tuple[int, ...] = (2, 3, 16, 3), |
|
dim_mul: float = 2.0, |
|
head_mul: float = 2.0, |
|
window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14), |
|
|
|
window_spec: Tuple[int, ...] = ( |
|
8, |
|
4, |
|
14, |
|
7, |
|
), |
|
|
|
global_att_blocks: Tuple[int, ...] = ( |
|
12, |
|
16, |
|
20, |
|
), |
|
return_interm_layers=True, |
|
): |
|
super().__init__() |
|
|
|
assert len(stages) == len(window_spec) |
|
self.window_spec = window_spec |
|
|
|
depth = sum(stages) |
|
self.q_stride = q_stride |
|
self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)] |
|
assert 0 <= q_pool <= len(self.stage_ends[:-1]) |
|
self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool] |
|
self.return_interm_layers = return_interm_layers |
|
|
|
self.patch_embed = PatchEmbed( |
|
embed_dim=embed_dim, |
|
) |
|
|
|
self.global_att_blocks = global_att_blocks |
|
|
|
|
|
self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size |
|
self.pos_embed = nn.Parameter( |
|
torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size) |
|
) |
|
self.pos_embed_window = nn.Parameter( |
|
torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0]) |
|
) |
|
|
|
dpr = [ |
|
x.item() for x in torch.linspace(0, drop_path_rate, depth) |
|
] |
|
|
|
cur_stage = 1 |
|
self.blocks = nn.ModuleList() |
|
|
|
for i in range(depth): |
|
dim_out = embed_dim |
|
|
|
|
|
|
|
window_size = self.window_spec[cur_stage - 1] |
|
|
|
if self.global_att_blocks is not None: |
|
window_size = 0 if i in self.global_att_blocks else window_size |
|
|
|
if i - 1 in self.stage_ends: |
|
dim_out = int(embed_dim * dim_mul) |
|
num_heads = int(num_heads * head_mul) |
|
cur_stage += 1 |
|
|
|
block = MultiScaleBlock( |
|
dim=embed_dim, |
|
dim_out=dim_out, |
|
num_heads=num_heads, |
|
drop_path=dpr[i], |
|
q_stride=self.q_stride if i in self.q_pool_blocks else None, |
|
window_size=window_size, |
|
) |
|
|
|
embed_dim = dim_out |
|
self.blocks.append(block) |
|
|
|
self.channel_list = ( |
|
[self.blocks[i].dim_out for i in self.stage_ends[::-1]] |
|
if return_interm_layers |
|
else [self.blocks[-1].dim_out] |
|
) |
|
|
|
def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor: |
|
h, w = hw |
|
window_embed = self.pos_embed_window |
|
pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic") |
|
pos_embed = pos_embed + window_embed.tile( |
|
[x // y for x, y in zip(pos_embed.shape, window_embed.shape)] |
|
) |
|
pos_embed = pos_embed.permute(0, 2, 3, 1) |
|
return pos_embed |
|
|
|
def forward(self, x: torch.Tensor) -> List[torch.Tensor]: |
|
x = self.patch_embed(x) |
|
|
|
|
|
|
|
x = x + self._get_pos_embed(x.shape[1:3]) |
|
|
|
outputs = [] |
|
for i, blk in enumerate(self.blocks): |
|
x = blk(x) |
|
if (i == self.stage_ends[-1]) or ( |
|
i in self.stage_ends and self.return_interm_layers |
|
): |
|
feats = x.permute(0, 3, 1, 2) |
|
outputs.append(feats) |
|
|
|
return outputs |
|
|
|
class TwoWayTransformer(nn.Module): |
|
def __init__( |
|
self, |
|
depth: int, |
|
embedding_dim: int, |
|
num_heads: int, |
|
mlp_dim: int, |
|
activation: Type[nn.Module] = nn.ReLU, |
|
attention_downsample_rate: int = 2, |
|
) -> None: |
|
""" |
|
A transformer decoder that attends to an input image using |
|
queries whose positional embedding is supplied. |
|
|
|
Args: |
|
depth (int): number of layers in the transformer |
|
embedding_dim (int): the channel dimension for the input embeddings |
|
num_heads (int): the number of heads for multihead attention. Must |
|
divide embedding_dim |
|
mlp_dim (int): the channel dimension internal to the MLP block |
|
activation (nn.Module): the activation to use in the MLP block |
|
""" |
|
super().__init__() |
|
self.depth = depth |
|
self.embedding_dim = embedding_dim |
|
self.num_heads = num_heads |
|
self.mlp_dim = mlp_dim |
|
self.layers = nn.ModuleList() |
|
|
|
for i in range(depth): |
|
self.layers.append( |
|
TwoWayAttentionBlock( |
|
embedding_dim=embedding_dim, |
|
num_heads=num_heads, |
|
mlp_dim=mlp_dim, |
|
activation=activation, |
|
attention_downsample_rate=attention_downsample_rate, |
|
skip_first_layer_pe=(i == 0), |
|
) |
|
) |
|
|
|
self.final_attn_token_to_image = Attention( |
|
embedding_dim, num_heads, downsample_rate=attention_downsample_rate |
|
) |
|
self.norm_final_attn = nn.LayerNorm(embedding_dim) |
|
|
|
def forward( |
|
self, |
|
image_embedding: Tensor, |
|
image_pe: Tensor, |
|
point_embedding: Tensor, |
|
) -> Tuple[Tensor, Tensor]: |
|
""" |
|
Args: |
|
image_embedding (torch.Tensor): image to attend to. Should be shape |
|
B x embedding_dim x h x w for any h and w. |
|
image_pe (torch.Tensor): the positional encoding to add to the image. Must |
|
have the same shape as image_embedding. |
|
point_embedding (torch.Tensor): the embedding to add to the query points. |
|
Must have shape B x N_points x embedding_dim for any N_points. |
|
|
|
Returns: |
|
torch.Tensor: the processed point_embedding |
|
torch.Tensor: the processed image_embedding |
|
""" |
|
|
|
bs, c, h, w = image_embedding.shape |
|
image_embedding = image_embedding.flatten(2).permute(0, 2, 1) |
|
image_pe = image_pe.flatten(2).permute(0, 2, 1) |
|
|
|
|
|
queries = point_embedding |
|
keys = image_embedding |
|
|
|
|
|
for layer in self.layers: |
|
queries, keys = layer( |
|
queries=queries, |
|
keys=keys, |
|
query_pe=point_embedding, |
|
key_pe=image_pe, |
|
) |
|
|
|
|
|
q = queries + point_embedding |
|
k = keys + image_pe |
|
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys) |
|
queries = queries + attn_out |
|
queries = self.norm_final_attn(queries) |
|
|
|
return queries, keys |
|
|
|
|
|
class TwoWayAttentionBlock(nn.Module): |
|
def __init__( |
|
self, |
|
embedding_dim: int, |
|
num_heads: int, |
|
mlp_dim: int = 2048, |
|
activation: Type[nn.Module] = nn.ReLU, |
|
attention_downsample_rate: int = 2, |
|
skip_first_layer_pe: bool = False, |
|
) -> None: |
|
""" |
|
A transformer block with four layers: (1) self-attention of sparse |
|
inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp |
|
block on sparse inputs, and (4) cross attention of dense inputs to sparse |
|
inputs. |
|
|
|
Arguments: |
|
embedding_dim (int): the channel dimension of the embeddings |
|
num_heads (int): the number of heads in the attention layers |
|
mlp_dim (int): the hidden dimension of the mlp block |
|
activation (nn.Module): the activation of the mlp block |
|
skip_first_layer_pe (bool): skip the PE on the first layer |
|
""" |
|
super().__init__() |
|
self.self_attn = Attention(embedding_dim, num_heads) |
|
self.norm1 = nn.LayerNorm(embedding_dim) |
|
|
|
self.cross_attn_token_to_image = Attention( |
|
embedding_dim, num_heads, downsample_rate=attention_downsample_rate |
|
) |
|
self.norm2 = nn.LayerNorm(embedding_dim) |
|
|
|
self.mlp = MLP( |
|
embedding_dim, mlp_dim, embedding_dim, num_layers=2, activation=activation |
|
) |
|
self.norm3 = nn.LayerNorm(embedding_dim) |
|
|
|
self.norm4 = nn.LayerNorm(embedding_dim) |
|
self.cross_attn_image_to_token = Attention( |
|
embedding_dim, num_heads, downsample_rate=attention_downsample_rate |
|
) |
|
|
|
self.skip_first_layer_pe = skip_first_layer_pe |
|
|
|
def forward( |
|
self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor |
|
) -> Tuple[Tensor, Tensor]: |
|
|
|
if self.skip_first_layer_pe: |
|
queries = self.self_attn(q=queries, k=queries, v=queries) |
|
else: |
|
q = queries + query_pe |
|
attn_out = self.self_attn(q=q, k=q, v=queries) |
|
queries = queries + attn_out |
|
queries = self.norm1(queries) |
|
|
|
|
|
q = queries + query_pe |
|
k = keys + key_pe |
|
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys) |
|
queries = queries + attn_out |
|
queries = self.norm2(queries) |
|
|
|
|
|
mlp_out = self.mlp(queries) |
|
queries = queries + mlp_out |
|
queries = self.norm3(queries) |
|
|
|
|
|
q = queries + query_pe |
|
k = keys + key_pe |
|
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries) |
|
keys = keys + attn_out |
|
keys = self.norm4(keys) |
|
|
|
return queries, keys |
|
|
|
|
|
class Attention(nn.Module): |
|
""" |
|
An attention layer that allows for downscaling the size of the embedding |
|
after projection to queries, keys, and values. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
embedding_dim: int, |
|
num_heads: int, |
|
downsample_rate: int = 1, |
|
dropout: float = 0.0, |
|
kv_in_dim: int = None, |
|
) -> None: |
|
super().__init__() |
|
self.embedding_dim = embedding_dim |
|
self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim |
|
self.internal_dim = embedding_dim // downsample_rate |
|
self.num_heads = num_heads |
|
assert ( |
|
self.internal_dim % num_heads == 0 |
|
), "num_heads must divide embedding_dim." |
|
|
|
self.q_proj = nn.Linear(embedding_dim, self.internal_dim) |
|
self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim) |
|
self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim) |
|
self.out_proj = nn.Linear(self.internal_dim, embedding_dim) |
|
|
|
self.dropout_p = dropout |
|
|
|
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor: |
|
b, n, c = x.shape |
|
x = x.reshape(b, n, num_heads, c // num_heads) |
|
return x.transpose(1, 2) |
|
|
|
def _recombine_heads(self, x: Tensor) -> Tensor: |
|
b, n_heads, n_tokens, c_per_head = x.shape |
|
x = x.transpose(1, 2) |
|
return x.reshape(b, n_tokens, n_heads * c_per_head) |
|
|
|
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor: |
|
|
|
q = self.q_proj(q) |
|
k = self.k_proj(k) |
|
v = self.v_proj(v) |
|
|
|
|
|
q = self._separate_heads(q, self.num_heads) |
|
k = self._separate_heads(k, self.num_heads) |
|
v = self._separate_heads(v, self.num_heads) |
|
|
|
dropout_p = self.dropout_p if self.training else 0.0 |
|
|
|
with torch.backends.cuda.sdp_kernel( |
|
enable_flash=USE_FLASH_ATTN, |
|
|
|
enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON, |
|
enable_mem_efficient=OLD_GPU, |
|
): |
|
out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) |
|
|
|
out = self._recombine_heads(out) |
|
out = self.out_proj(out) |
|
|
|
return out |
|
|
|
|
|
class RoPEAttention(Attention): |
|
"""Attention with rotary position encoding.""" |
|
|
|
def __init__( |
|
self, |
|
*args, |
|
rope_theta=10000.0, |
|
|
|
|
|
rope_k_repeat=False, |
|
feat_sizes=(32, 32), |
|
**kwargs, |
|
): |
|
super().__init__(*args, **kwargs) |
|
|
|
self.compute_cis = partial( |
|
compute_axial_cis, dim=self.internal_dim // self.num_heads, theta=rope_theta |
|
) |
|
freqs_cis = self.compute_cis(end_x=feat_sizes[0], end_y=feat_sizes[1]) |
|
self.freqs_cis = freqs_cis |
|
self.rope_k_repeat = rope_k_repeat |
|
|
|
def forward( |
|
self, q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int = 0 |
|
) -> Tensor: |
|
|
|
q = self.q_proj(q) |
|
k = self.k_proj(k) |
|
v = self.v_proj(v) |
|
|
|
|
|
q = self._separate_heads(q, self.num_heads) |
|
k = self._separate_heads(k, self.num_heads) |
|
v = self._separate_heads(v, self.num_heads) |
|
|
|
|
|
w = h = math.sqrt(q.shape[-2]) |
|
self.freqs_cis = self.freqs_cis.to(q.device) |
|
if self.freqs_cis.shape[0] != q.shape[-2]: |
|
self.freqs_cis = self.compute_cis(end_x=w, end_y=h).to(q.device) |
|
if q.shape[-2] != k.shape[-2]: |
|
assert self.rope_k_repeat |
|
|
|
num_k_rope = k.size(-2) - num_k_exclude_rope |
|
q, k[:, :, :num_k_rope] = apply_rotary_enc( |
|
q, |
|
k[:, :, :num_k_rope], |
|
freqs_cis=self.freqs_cis, |
|
repeat_freqs_k=self.rope_k_repeat, |
|
) |
|
|
|
dropout_p = self.dropout_p if self.training else 0.0 |
|
|
|
with torch.backends.cuda.sdp_kernel( |
|
enable_flash=USE_FLASH_ATTN, |
|
|
|
enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON, |
|
enable_mem_efficient=OLD_GPU, |
|
): |
|
out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) |
|
|
|
out = self._recombine_heads(out) |
|
out = self.out_proj(out) |
|
|
|
return out |
|
|
|
|
|
class PromptEncoder(nn.Module): |
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
image_embedding_size: Tuple[int, int], |
|
input_image_size: Tuple[int, int], |
|
mask_in_chans: int, |
|
activation: Type[nn.Module] = nn.GELU, |
|
) -> None: |
|
""" |
|
Encodes prompts for input to SAM's mask decoder. |
|
|
|
Arguments: |
|
embed_dim (int): The prompts' embedding dimension |
|
image_embedding_size (tuple(int, int)): The spatial size of the |
|
image embedding, as (H, W). |
|
input_image_size (int): The padded size of the image as input |
|
to the image encoder, as (H, W). |
|
mask_in_chans (int): The number of hidden channels used for |
|
encoding input masks. |
|
activation (nn.Module): The activation to use when encoding |
|
input masks. |
|
""" |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.input_image_size = input_image_size |
|
self.image_embedding_size = image_embedding_size |
|
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2) |
|
|
|
self.num_point_embeddings: int = 4 |
|
point_embeddings = [ |
|
nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings) |
|
] |
|
self.point_embeddings = nn.ModuleList(point_embeddings) |
|
self.not_a_point_embed = nn.Embedding(1, embed_dim) |
|
|
|
self.mask_input_size = ( |
|
4 * image_embedding_size[0], |
|
4 * image_embedding_size[1], |
|
) |
|
self.mask_downscaling = nn.Sequential( |
|
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2), |
|
LayerNorm2d(mask_in_chans // 4), |
|
activation(), |
|
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2), |
|
LayerNorm2d(mask_in_chans), |
|
activation(), |
|
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1), |
|
) |
|
self.no_mask_embed = nn.Embedding(1, embed_dim) |
|
|
|
def get_dense_pe(self) -> torch.Tensor: |
|
""" |
|
Returns the positional encoding used to encode point prompts, |
|
applied to a dense set of points the shape of the image encoding. |
|
|
|
Returns: |
|
torch.Tensor: Positional encoding with shape |
|
1x(embed_dim)x(embedding_h)x(embedding_w) |
|
""" |
|
return self.pe_layer(self.image_embedding_size).unsqueeze(0) |
|
|
|
def _embed_points( |
|
self, |
|
points: torch.Tensor, |
|
labels: torch.Tensor, |
|
pad: bool, |
|
) -> torch.Tensor: |
|
"""Embeds point prompts.""" |
|
points = points + 0.5 |
|
if pad: |
|
padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device) |
|
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device) |
|
points = torch.cat([points, padding_point], dim=1) |
|
labels = torch.cat([labels, padding_label], dim=1) |
|
point_embedding = self.pe_layer.forward_with_coords( |
|
points, self.input_image_size |
|
) |
|
point_embedding[labels == -1] = 0.0 |
|
point_embedding[labels == -1] += self.not_a_point_embed.weight |
|
point_embedding[labels == 0] += self.point_embeddings[0].weight |
|
point_embedding[labels == 1] += self.point_embeddings[1].weight |
|
point_embedding[labels == 2] += self.point_embeddings[2].weight |
|
point_embedding[labels == 3] += self.point_embeddings[3].weight |
|
return point_embedding |
|
|
|
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor: |
|
"""Embeds box prompts.""" |
|
boxes = boxes + 0.5 |
|
coords = boxes.reshape(-1, 2, 2) |
|
corner_embedding = self.pe_layer.forward_with_coords( |
|
coords, self.input_image_size |
|
) |
|
corner_embedding[:, 0, :] += self.point_embeddings[2].weight |
|
corner_embedding[:, 1, :] += self.point_embeddings[3].weight |
|
return corner_embedding |
|
|
|
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor: |
|
"""Embeds mask inputs.""" |
|
mask_embedding = self.mask_downscaling(masks) |
|
return mask_embedding |
|
|
|
def _get_batch_size( |
|
self, |
|
points: Optional[Tuple[torch.Tensor, torch.Tensor]], |
|
boxes: Optional[torch.Tensor], |
|
masks: Optional[torch.Tensor], |
|
) -> int: |
|
""" |
|
Gets the batch size of the output given the batch size of the input prompts. |
|
""" |
|
if points is not None: |
|
return points[0].shape[0] |
|
elif boxes is not None: |
|
return boxes.shape[0] |
|
elif masks is not None: |
|
return masks.shape[0] |
|
else: |
|
return 1 |
|
|
|
def _get_device(self) -> torch.device: |
|
return self.point_embeddings[0].weight.device |
|
|
|
def forward( |
|
self, |
|
points: Optional[Tuple[torch.Tensor, torch.Tensor]], |
|
boxes: Optional[torch.Tensor], |
|
masks: Optional[torch.Tensor], |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Embeds different types of prompts, returning both sparse and dense |
|
embeddings. |
|
|
|
Arguments: |
|
points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates |
|
and labels to embed. |
|
boxes (torch.Tensor or none): boxes to embed |
|
masks (torch.Tensor or none): masks to embed |
|
|
|
Returns: |
|
torch.Tensor: sparse embeddings for the points and boxes, with shape |
|
BxNx(embed_dim), where N is determined by the number of input points |
|
and boxes. |
|
torch.Tensor: dense embeddings for the masks, in the shape |
|
Bx(embed_dim)x(embed_H)x(embed_W) |
|
""" |
|
bs = self._get_batch_size(points, boxes, masks) |
|
sparse_embeddings = torch.empty( |
|
(bs, 0, self.embed_dim), device=self._get_device() |
|
) |
|
if points is not None: |
|
coords, labels = points |
|
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None)) |
|
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1) |
|
if boxes is not None: |
|
box_embeddings = self._embed_boxes(boxes) |
|
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1) |
|
|
|
if masks is not None: |
|
dense_embeddings = self._embed_masks(masks) |
|
else: |
|
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand( |
|
bs, -1, self.image_embedding_size[0], self.image_embedding_size[1] |
|
) |
|
|
|
return sparse_embeddings, dense_embeddings |
|
|
|
class PositionEmbeddingSine(nn.Module): |
|
""" |
|
This is a more standard version of the position embedding, very similar to the one |
|
used by the Attention is all you need paper, generalized to work on images. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
num_pos_feats, |
|
temperature: int = 10000, |
|
normalize: bool = True, |
|
scale: Optional[float] = None, |
|
): |
|
super().__init__() |
|
assert num_pos_feats % 2 == 0, "Expecting even model width" |
|
self.num_pos_feats = num_pos_feats // 2 |
|
self.temperature = temperature |
|
self.normalize = normalize |
|
if scale is not None and normalize is False: |
|
raise ValueError("normalize should be True if scale is passed") |
|
if scale is None: |
|
scale = 2 * math.pi |
|
self.scale = scale |
|
|
|
self.cache = {} |
|
|
|
def _encode_xy(self, x, y): |
|
|
|
assert len(x) == len(y) and x.ndim == y.ndim == 1 |
|
x_embed = x * self.scale |
|
y_embed = y * self.scale |
|
|
|
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) |
|
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) |
|
|
|
pos_x = x_embed[:, None] / dim_t |
|
pos_y = y_embed[:, None] / dim_t |
|
pos_x = torch.stack( |
|
(pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2 |
|
).flatten(1) |
|
pos_y = torch.stack( |
|
(pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2 |
|
).flatten(1) |
|
return pos_x, pos_y |
|
|
|
@torch.no_grad() |
|
def encode_boxes(self, x, y, w, h): |
|
pos_x, pos_y = self._encode_xy(x, y) |
|
pos = torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1) |
|
return pos |
|
|
|
encode = encode_boxes |
|
|
|
@torch.no_grad() |
|
def encode_points(self, x, y, labels): |
|
(bx, nx), (by, ny), (bl, nl) = x.shape, y.shape, labels.shape |
|
assert bx == by and nx == ny and bx == bl and nx == nl |
|
pos_x, pos_y = self._encode_xy(x.flatten(), y.flatten()) |
|
pos_x, pos_y = pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1) |
|
pos = torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2) |
|
return pos |
|
|
|
@torch.no_grad() |
|
def forward(self, x: torch.Tensor): |
|
cache_key = (x.shape[-2], x.shape[-1]) |
|
if cache_key in self.cache: |
|
return self.cache[cache_key][None].repeat(x.shape[0], 1, 1, 1) |
|
y_embed = ( |
|
torch.arange(1, x.shape[-2] + 1, dtype=torch.float32, device=x.device) |
|
.view(1, -1, 1) |
|
.repeat(x.shape[0], 1, x.shape[-1]) |
|
) |
|
x_embed = ( |
|
torch.arange(1, x.shape[-1] + 1, dtype=torch.float32, device=x.device) |
|
.view(1, 1, -1) |
|
.repeat(x.shape[0], x.shape[-2], 1) |
|
) |
|
|
|
if self.normalize: |
|
eps = 1e-6 |
|
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale |
|
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale |
|
|
|
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) |
|
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) |
|
|
|
pos_x = x_embed[:, :, :, None] / dim_t |
|
pos_y = y_embed[:, :, :, None] / dim_t |
|
pos_x = torch.stack( |
|
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 |
|
).flatten(3) |
|
pos_y = torch.stack( |
|
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 |
|
).flatten(3) |
|
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) |
|
self.cache[cache_key] = pos[0] |
|
return pos |
|
|
|
|
|
class PositionEmbeddingRandom(nn.Module): |
|
""" |
|
Positional encoding using random spatial frequencies. |
|
""" |
|
|
|
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None: |
|
super().__init__() |
|
if scale is None or scale <= 0.0: |
|
scale = 1.0 |
|
self.register_buffer( |
|
"positional_encoding_gaussian_matrix", |
|
scale * torch.randn((2, num_pos_feats)), |
|
) |
|
self.first = True |
|
|
|
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: |
|
"""Positionally encode points that are normalized to [0,1].""" |
|
|
|
coords = 2 * coords - 1 |
|
coords = coords.to(self.positional_encoding_gaussian_matrix.dtype) |
|
if self.first: |
|
self.positional_encoding_gaussian_matrix = self.positional_encoding_gaussian_matrix.to(coords.device) |
|
self.first = False |
|
coords = coords @ self.positional_encoding_gaussian_matrix |
|
coords = 2 * np.pi * coords |
|
|
|
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) |
|
|
|
def forward(self, size: Tuple[int, int]) -> torch.Tensor: |
|
"""Generate positional encoding for a grid of the specified size.""" |
|
h, w = size |
|
device: Any = self.positional_encoding_gaussian_matrix.device |
|
grid = torch.ones((h, w), device=device, dtype=torch.float32) |
|
y_embed = grid.cumsum(dim=0) - 0.5 |
|
x_embed = grid.cumsum(dim=1) - 0.5 |
|
y_embed = y_embed / h |
|
x_embed = x_embed / w |
|
|
|
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1)) |
|
return pe.permute(2, 0, 1) |
|
|
|
def forward_with_coords( |
|
self, coords_input: torch.Tensor, image_size: Tuple[int, int] |
|
) -> torch.Tensor: |
|
"""Positionally encode points that are not normalized to [0,1].""" |
|
coords = coords_input.clone() |
|
coords[:, :, 0] = coords[:, :, 0] / image_size[1] |
|
coords[:, :, 1] = coords[:, :, 1] / image_size[0] |
|
return self._pe_encoding(coords.to(torch.float)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def init_t_xy(end_x: int, end_y: int): |
|
t = torch.arange(end_x * end_y, dtype=torch.float32) |
|
t_x = (t % end_x).float() |
|
t_y = torch.div(t, end_x, rounding_mode="floor").float() |
|
return t_x, t_y |
|
|
|
|
|
def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float = 10000.0): |
|
freqs_x = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim)) |
|
freqs_y = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim)) |
|
|
|
t_x, t_y = init_t_xy(end_x, end_y) |
|
freqs_x = torch.outer(t_x, freqs_x) |
|
freqs_y = torch.outer(t_y, freqs_y) |
|
freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x) |
|
freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y) |
|
return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1) |
|
|
|
|
|
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): |
|
ndim = x.ndim |
|
assert 0 <= 1 < ndim |
|
assert freqs_cis.shape == (x.shape[-2], x.shape[-1]) |
|
shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)] |
|
return freqs_cis.view(*shape) |
|
|
|
|
|
def apply_rotary_enc( |
|
xq: torch.Tensor, |
|
xk: torch.Tensor, |
|
freqs_cis: torch.Tensor, |
|
repeat_freqs_k: bool = False, |
|
): |
|
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) |
|
xk_ = ( |
|
torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) |
|
if xk.shape[-2] != 0 |
|
else None |
|
) |
|
freqs_cis = reshape_for_broadcast(freqs_cis, xq_) |
|
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) |
|
if xk_ is None: |
|
|
|
return xq_out.type_as(xq).to(xq.device), xk |
|
|
|
if repeat_freqs_k: |
|
r = xk_.shape[-2] // xq_.shape[-2] |
|
freqs_cis = freqs_cis.repeat(*([1] * (freqs_cis.ndim - 2)), r, 1) |
|
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) |
|
return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device) |
|
|
|
|
|
class MaskDecoder(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
transformer_dim: int, |
|
transformer: nn.Module, |
|
num_multimask_outputs: int = 3, |
|
activation: Type[nn.Module] = nn.GELU, |
|
iou_head_depth: int = 3, |
|
iou_head_hidden_dim: int = 256, |
|
use_high_res_features: bool = False, |
|
iou_prediction_use_sigmoid=False, |
|
dynamic_multimask_via_stability=False, |
|
dynamic_multimask_stability_delta=0.05, |
|
dynamic_multimask_stability_thresh=0.98, |
|
pred_obj_scores: bool = False, |
|
pred_obj_scores_mlp: bool = False, |
|
use_multimask_token_for_obj_ptr: bool = False, |
|
) -> None: |
|
""" |
|
Predicts masks given an image and prompt embeddings, using a |
|
transformer architecture. |
|
|
|
Arguments: |
|
transformer_dim (int): the channel dimension of the transformer |
|
transformer (nn.Module): the transformer used to predict masks |
|
num_multimask_outputs (int): the number of masks to predict |
|
when disambiguating masks |
|
activation (nn.Module): the type of activation to use when |
|
upscaling masks |
|
iou_head_depth (int): the depth of the MLP used to predict |
|
mask quality |
|
iou_head_hidden_dim (int): the hidden dimension of the MLP |
|
used to predict mask quality |
|
""" |
|
super().__init__() |
|
self.transformer_dim = transformer_dim |
|
self.transformer = transformer |
|
|
|
self.num_multimask_outputs = num_multimask_outputs |
|
|
|
self.iou_token = nn.Embedding(1, transformer_dim) |
|
self.num_mask_tokens = num_multimask_outputs + 1 |
|
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) |
|
|
|
self.pred_obj_scores = pred_obj_scores |
|
if self.pred_obj_scores: |
|
self.obj_score_token = nn.Embedding(1, transformer_dim) |
|
self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr |
|
|
|
self.output_upscaling = nn.Sequential( |
|
nn.ConvTranspose2d( |
|
transformer_dim, transformer_dim // 4, kernel_size=2, stride=2 |
|
), |
|
LayerNorm2d(transformer_dim // 4), |
|
activation(), |
|
nn.ConvTranspose2d( |
|
transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2 |
|
), |
|
activation(), |
|
) |
|
self.use_high_res_features = use_high_res_features |
|
if use_high_res_features: |
|
self.conv_s0 = nn.Conv2d( |
|
transformer_dim, transformer_dim // 8, kernel_size=1, stride=1 |
|
) |
|
self.conv_s1 = nn.Conv2d( |
|
transformer_dim, transformer_dim // 4, kernel_size=1, stride=1 |
|
) |
|
|
|
self.output_hypernetworks_mlps = nn.ModuleList( |
|
[ |
|
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) |
|
for i in range(self.num_mask_tokens) |
|
] |
|
) |
|
|
|
self.iou_prediction_head = MLP( |
|
transformer_dim, |
|
iou_head_hidden_dim, |
|
self.num_mask_tokens, |
|
iou_head_depth, |
|
sigmoid_output=iou_prediction_use_sigmoid, |
|
) |
|
if self.pred_obj_scores: |
|
self.pred_obj_score_head = nn.Linear(transformer_dim, 1) |
|
if pred_obj_scores_mlp: |
|
self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3) |
|
|
|
|
|
|
|
self.dynamic_multimask_via_stability = dynamic_multimask_via_stability |
|
self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta |
|
self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh |
|
|
|
def forward( |
|
self, |
|
image_embeddings: torch.Tensor, |
|
image_pe: torch.Tensor, |
|
sparse_prompt_embeddings: torch.Tensor, |
|
dense_prompt_embeddings: torch.Tensor, |
|
multimask_output: bool, |
|
repeat_image: bool, |
|
high_res_features: Optional[List[torch.Tensor]] = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Predict masks given image and prompt embeddings. |
|
|
|
Arguments: |
|
image_embeddings (torch.Tensor): the embeddings from the image encoder |
|
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings |
|
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes |
|
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs |
|
multimask_output (bool): Whether to return multiple masks or a single |
|
mask. |
|
|
|
Returns: |
|
torch.Tensor: batched predicted masks |
|
torch.Tensor: batched predictions of mask quality |
|
torch.Tensor: batched SAM token for mask output |
|
""" |
|
masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks( |
|
image_embeddings=image_embeddings, |
|
image_pe=image_pe, |
|
sparse_prompt_embeddings=sparse_prompt_embeddings, |
|
dense_prompt_embeddings=dense_prompt_embeddings, |
|
repeat_image=repeat_image, |
|
high_res_features=high_res_features, |
|
) |
|
|
|
|
|
if multimask_output: |
|
masks = masks[:, 1:, :, :] |
|
iou_pred = iou_pred[:, 1:] |
|
elif self.dynamic_multimask_via_stability and not self.training: |
|
masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred) |
|
else: |
|
masks = masks[:, 0:1, :, :] |
|
iou_pred = iou_pred[:, 0:1] |
|
|
|
if multimask_output and self.use_multimask_token_for_obj_ptr: |
|
sam_tokens_out = mask_tokens_out[:, 1:] |
|
else: |
|
|
|
|
|
|
|
|
|
|
|
sam_tokens_out = mask_tokens_out[:, 0:1] |
|
|
|
|
|
return masks, iou_pred, sam_tokens_out, object_score_logits |
|
|
|
def predict_masks( |
|
self, |
|
image_embeddings: torch.Tensor, |
|
image_pe: torch.Tensor, |
|
sparse_prompt_embeddings: torch.Tensor, |
|
dense_prompt_embeddings: torch.Tensor, |
|
repeat_image: bool, |
|
high_res_features: Optional[List[torch.Tensor]] = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Predicts masks. See 'forward' for more details.""" |
|
|
|
s = 0 |
|
if self.pred_obj_scores: |
|
output_tokens = torch.cat( |
|
[ |
|
self.obj_score_token.weight, |
|
self.iou_token.weight, |
|
self.mask_tokens.weight, |
|
], |
|
dim=0, |
|
) |
|
s = 1 |
|
else: |
|
output_tokens = torch.cat( |
|
[self.iou_token.weight, self.mask_tokens.weight], dim=0 |
|
) |
|
output_tokens = output_tokens.unsqueeze(0).expand( |
|
sparse_prompt_embeddings.size(0), -1, -1 |
|
) |
|
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) |
|
|
|
|
|
if repeat_image: |
|
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) |
|
else: |
|
assert image_embeddings.shape[0] == tokens.shape[0] |
|
src = image_embeddings |
|
src = src + dense_prompt_embeddings |
|
assert ( |
|
image_pe.size(0) == 1 |
|
), "image_pe should have size 1 in batch dim (from `get_dense_pe()`)" |
|
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) |
|
b, c, h, w = src.shape |
|
|
|
|
|
|
|
_dtype = pos_src.dtype |
|
src = src.to(_dtype) |
|
tokens = tokens.to(_dtype) |
|
hs, src = self.transformer(src, pos_src, tokens) |
|
iou_token_out = hs[:, s, :] |
|
mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :] |
|
|
|
|
|
src = src.transpose(1, 2).view(b, c, h, w) |
|
if not self.use_high_res_features: |
|
upscaled_embedding = self.output_upscaling(src) |
|
else: |
|
dc1, ln1, act1, dc2, act2 = self.output_upscaling |
|
feat_s0, feat_s1 = high_res_features |
|
upscaled_embedding = act1(ln1(dc1(src) + feat_s1)) |
|
upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0) |
|
|
|
hyper_in_list: List[torch.Tensor] = [] |
|
for i in range(self.num_mask_tokens): |
|
hyper_in_list.append( |
|
self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) |
|
) |
|
hyper_in = torch.stack(hyper_in_list, dim=1) |
|
b, c, h, w = upscaled_embedding.shape |
|
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) |
|
|
|
|
|
iou_pred = self.iou_prediction_head(iou_token_out) |
|
if self.pred_obj_scores: |
|
assert s == 1 |
|
object_score_logits = self.pred_obj_score_head(hs[:, 0, :]) |
|
else: |
|
|
|
object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1) |
|
|
|
return masks, iou_pred, mask_tokens_out, object_score_logits |
|
|
|
def _get_stability_scores(self, mask_logits): |
|
""" |
|
Compute stability scores of the mask logits based on the IoU between upper and |
|
lower thresholds, similar to https://github.com/fairinternal/onevision/pull/568. |
|
""" |
|
mask_logits = mask_logits.flatten(-2) |
|
stability_delta = self.dynamic_multimask_stability_delta |
|
area_i = torch.sum(mask_logits > stability_delta, dim=-1).float() |
|
area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float() |
|
stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0) |
|
return stability_scores |
|
|
|
def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores): |
|
""" |
|
When outputting a single mask, if the stability score from the current single-mask |
|
output (based on output token 0) falls below a threshold, we instead select from |
|
multi-mask outputs (based on output token 1~3) the mask with the highest predicted |
|
IoU score. This is intended to ensure a valid mask for both clicking and tracking. |
|
""" |
|
|
|
multimask_logits = all_mask_logits[:, 1:, :, :] |
|
multimask_iou_scores = all_iou_scores[:, 1:] |
|
best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1) |
|
batch_inds = torch.arange( |
|
multimask_iou_scores.size(0), device=all_iou_scores.device |
|
) |
|
best_multimask_logits = multimask_logits[batch_inds, best_scores_inds] |
|
best_multimask_logits = best_multimask_logits.unsqueeze(1) |
|
best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds] |
|
best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1) |
|
|
|
|
|
singlemask_logits = all_mask_logits[:, 0:1, :, :] |
|
singlemask_iou_scores = all_iou_scores[:, 0:1] |
|
stability_scores = self._get_stability_scores(singlemask_logits) |
|
is_stable = stability_scores >= self.dynamic_multimask_stability_thresh |
|
|
|
|
|
mask_logits_out = torch.where( |
|
is_stable[..., None, None].expand_as(singlemask_logits), |
|
singlemask_logits, |
|
best_multimask_logits, |
|
) |
|
iou_scores_out = torch.where( |
|
is_stable.expand_as(singlemask_iou_scores), |
|
singlemask_iou_scores, |
|
best_multimask_iou_scores, |
|
) |
|
return mask_logits_out, iou_scores_out |
|
|
|
def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num): |
|
""" |
|
Select up to `max_cond_frame_num` conditioning frames from `cond_frame_outputs` |
|
that are temporally closest to the current frame at `frame_idx`. Here, we take |
|
- a) the closest conditioning frame before `frame_idx` (if any); |
|
- b) the closest conditioning frame after `frame_idx` (if any); |
|
- c) any other temporally closest conditioning frames until reaching a total |
|
of `max_cond_frame_num` conditioning frames. |
|
|
|
Outputs: |
|
- selected_outputs: selected items (keys & values) from `cond_frame_outputs`. |
|
- unselected_outputs: items (keys & values) not selected in `cond_frame_outputs`. |
|
""" |
|
if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num: |
|
selected_outputs = cond_frame_outputs |
|
unselected_outputs = {} |
|
else: |
|
assert max_cond_frame_num >= 2, "we should allow using 2+ conditioning frames" |
|
selected_outputs = {} |
|
|
|
|
|
idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None) |
|
if idx_before is not None: |
|
selected_outputs[idx_before] = cond_frame_outputs[idx_before] |
|
|
|
|
|
idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None) |
|
if idx_after is not None: |
|
selected_outputs[idx_after] = cond_frame_outputs[idx_after] |
|
|
|
|
|
|
|
num_remain = max_cond_frame_num - len(selected_outputs) |
|
inds_remain = sorted( |
|
(t for t in cond_frame_outputs if t not in selected_outputs), |
|
key=lambda x: abs(x - frame_idx), |
|
)[:num_remain] |
|
selected_outputs.update((t, cond_frame_outputs[t]) for t in inds_remain) |
|
unselected_outputs = { |
|
t: v for t, v in cond_frame_outputs.items() if t not in selected_outputs |
|
} |
|
|
|
return selected_outputs, unselected_outputs |
|
|
|
|
|
def get_1d_sine_pe(pos_inds, dim, temperature=10000): |
|
""" |
|
Get 1D sine positional embedding as in the original Transformer paper. |
|
""" |
|
pe_dim = dim // 2 |
|
dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device) |
|
dim_t = temperature ** (2 * (dim_t // 2) / pe_dim) |
|
|
|
pos_embed = pos_inds.unsqueeze(-1) / dim_t |
|
pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1) |
|
return pos_embed |
|
|
|
|
|
def get_activation_fn(activation): |
|
"""Return an activation function given a string""" |
|
if activation == "relu": |
|
return F.relu |
|
if activation == "gelu": |
|
return F.gelu |
|
if activation == "glu": |
|
return F.glu |
|
raise RuntimeError(f"activation should be relu/gelu, not {activation}.") |
|
|
|
|
|
def get_clones(module, N): |
|
return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) |
|
|
|
|
|
class DropPath(nn.Module): |
|
|
|
def __init__(self, drop_prob=0.0, scale_by_keep=True): |
|
super(DropPath, self).__init__() |
|
self.drop_prob = drop_prob |
|
self.scale_by_keep = scale_by_keep |
|
|
|
def forward(self, x): |
|
if self.drop_prob == 0.0 or not self.training: |
|
return x |
|
keep_prob = 1 - self.drop_prob |
|
shape = (x.shape[0],) + (1,) * (x.ndim - 1) |
|
random_tensor = x.new_empty(shape).bernoulli_(keep_prob) |
|
if keep_prob > 0.0 and self.scale_by_keep: |
|
random_tensor.div_(keep_prob) |
|
return x * random_tensor |
|
|
|
|
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__( |
|
self, |
|
input_dim: int, |
|
hidden_dim: int, |
|
output_dim: int, |
|
num_layers: int, |
|
activation: nn.Module = nn.ReLU, |
|
sigmoid_output: bool = False, |
|
) -> None: |
|
super().__init__() |
|
self.num_layers = num_layers |
|
h = [hidden_dim] * (num_layers - 1) |
|
self.layers = nn.ModuleList( |
|
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) |
|
) |
|
self.sigmoid_output = sigmoid_output |
|
self.act = activation() |
|
|
|
def forward(self, x): |
|
for i, layer in enumerate(self.layers): |
|
x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x) |
|
if self.sigmoid_output: |
|
x = F.sigmoid(x) |
|
return x |
|
|
|
|
|
|
|
|
|
class LayerNorm2d(nn.Module): |
|
def __init__(self, num_channels: int, eps: float = 1e-6) -> None: |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(num_channels)) |
|
self.bias = nn.Parameter(torch.zeros(num_channels)) |
|
self.eps = eps |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
u = x.mean(1, keepdim=True) |
|
s = (x - u).pow(2).mean(1, keepdim=True) |
|
x = (x - u) / torch.sqrt(s + self.eps) |
|
x = self.weight[:, None, None] * x + self.bias[:, None, None] |
|
return x |
|
|
|
class SAM2Base_(torch.nn.Module): |
|
def __init__( |
|
self, |
|
image_encoder, |
|
memory_attention, |
|
memory_encoder, |
|
num_maskmem=7, |
|
image_size=512, |
|
backbone_stride=16, |
|
sigmoid_scale_for_mem_enc=1.0, |
|
sigmoid_bias_for_mem_enc=0.0, |
|
|
|
binarize_mask_from_pts_for_mem_enc=False, |
|
use_mask_input_as_output_without_sam=False, |
|
|
|
|
|
|
|
max_cond_frames_in_attn=-1, |
|
|
|
|
|
directly_add_no_mem_embed=False, |
|
|
|
use_high_res_features_in_sam=False, |
|
|
|
multimask_output_in_sam=False, |
|
|
|
|
|
multimask_min_pt_num=1, |
|
multimask_max_pt_num=1, |
|
|
|
multimask_output_for_tracking=False, |
|
|
|
|
|
use_multimask_token_for_obj_ptr: bool = False, |
|
|
|
iou_prediction_use_sigmoid=False, |
|
|
|
|
|
|
|
memory_temporal_stride_for_eval=1, |
|
|
|
|
|
add_all_frames_to_correct_as_cond=False, |
|
|
|
non_overlap_masks_for_mem_enc=False, |
|
|
|
use_obj_ptrs_in_encoder=False, |
|
|
|
max_obj_ptrs_in_encoder=16, |
|
|
|
add_tpos_enc_to_obj_ptrs=True, |
|
|
|
|
|
proj_tpos_enc_in_obj_ptrs=False, |
|
|
|
|
|
only_obj_ptrs_in_the_past_for_eval=False, |
|
|
|
pred_obj_scores: bool = False, |
|
|
|
pred_obj_scores_mlp: bool = False, |
|
|
|
|
|
|
|
fixed_no_obj_ptr: bool = False, |
|
|
|
|
|
soft_no_obj_ptr: bool = False, |
|
use_mlp_for_obj_ptr_proj: bool = False, |
|
|
|
sam_mask_decoder_extra_args=None, |
|
compile_image_encoder: bool = False, |
|
): |
|
super().__init__() |
|
|
|
|
|
self.image_encoder = image_encoder |
|
|
|
self.use_high_res_features_in_sam = use_high_res_features_in_sam |
|
self.num_feature_levels = 3 if use_high_res_features_in_sam else 1 |
|
self.use_obj_ptrs_in_encoder = use_obj_ptrs_in_encoder |
|
self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder |
|
if use_obj_ptrs_in_encoder: |
|
|
|
|
|
|
|
self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4) |
|
self.add_tpos_enc_to_obj_ptrs = add_tpos_enc_to_obj_ptrs |
|
if proj_tpos_enc_in_obj_ptrs: |
|
assert add_tpos_enc_to_obj_ptrs |
|
self.proj_tpos_enc_in_obj_ptrs = proj_tpos_enc_in_obj_ptrs |
|
self.only_obj_ptrs_in_the_past_for_eval = only_obj_ptrs_in_the_past_for_eval |
|
|
|
|
|
|
|
self.memory_attention = memory_attention |
|
self.hidden_dim = memory_attention.d_model |
|
|
|
|
|
self.memory_encoder = memory_encoder |
|
self.mem_dim = self.hidden_dim |
|
if hasattr(self.memory_encoder, "out_proj") and hasattr( |
|
self.memory_encoder.out_proj, "weight" |
|
): |
|
|
|
self.mem_dim = self.memory_encoder.out_proj.weight.shape[0] |
|
self.num_maskmem = num_maskmem |
|
|
|
self.maskmem_tpos_enc = torch.nn.Parameter( |
|
torch.zeros(num_maskmem, 1, 1, self.mem_dim) |
|
) |
|
trunc_normal_(self.maskmem_tpos_enc, std=0.02) |
|
|
|
self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim)) |
|
self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim)) |
|
trunc_normal_(self.no_mem_embed, std=0.02) |
|
trunc_normal_(self.no_mem_pos_enc, std=0.02) |
|
self.directly_add_no_mem_embed = directly_add_no_mem_embed |
|
|
|
|
|
self.sigmoid_scale_for_mem_enc = sigmoid_scale_for_mem_enc |
|
self.sigmoid_bias_for_mem_enc = sigmoid_bias_for_mem_enc |
|
self.binarize_mask_from_pts_for_mem_enc = binarize_mask_from_pts_for_mem_enc |
|
self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc |
|
self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval |
|
|
|
|
|
self.use_mask_input_as_output_without_sam = use_mask_input_as_output_without_sam |
|
self.multimask_output_in_sam = multimask_output_in_sam |
|
self.multimask_min_pt_num = multimask_min_pt_num |
|
self.multimask_max_pt_num = multimask_max_pt_num |
|
self.multimask_output_for_tracking = multimask_output_for_tracking |
|
self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr |
|
self.iou_prediction_use_sigmoid = iou_prediction_use_sigmoid |
|
|
|
|
|
|
|
self.image_size = image_size |
|
self.backbone_stride = backbone_stride |
|
self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args |
|
self.pred_obj_scores = pred_obj_scores |
|
self.pred_obj_scores_mlp = pred_obj_scores_mlp |
|
self.fixed_no_obj_ptr = fixed_no_obj_ptr |
|
self.soft_no_obj_ptr = soft_no_obj_ptr |
|
if self.fixed_no_obj_ptr: |
|
assert self.pred_obj_scores |
|
assert self.use_obj_ptrs_in_encoder |
|
if self.pred_obj_scores and self.use_obj_ptrs_in_encoder: |
|
self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim)) |
|
trunc_normal_(self.no_obj_ptr, std=0.02) |
|
self.use_mlp_for_obj_ptr_proj = use_mlp_for_obj_ptr_proj |
|
|
|
self._build_sam_heads() |
|
self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond |
|
self.max_cond_frames_in_attn = max_cond_frames_in_attn |
|
|
|
|
|
if compile_image_encoder: |
|
|
|
print( |
|
"Image encoder compilation is enabled. First forward pass will be slow." |
|
) |
|
self.image_encoder.forward = torch.compile( |
|
self.image_encoder.forward, |
|
mode="max-autotune", |
|
fullgraph=True, |
|
dynamic=False, |
|
) |
|
|
|
@property |
|
def device(self): |
|
return next(self.parameters()).device |
|
|
|
def forward(self, *args, **kwargs): |
|
raise NotImplementedError( |
|
"Please use the corresponding methods in SAM2VideoPredictor for inference." |
|
"See notebooks/video_predictor_example.ipynb for an example." |
|
) |
|
|
|
def _build_sam_heads(self): |
|
"""Build SAM-style prompt encoder and mask decoder.""" |
|
self.sam_prompt_embed_dim = self.hidden_dim |
|
self.sam_image_embedding_size = self.image_size // self.backbone_stride |
|
|
|
|
|
|
|
self.sam_prompt_encoder = PromptEncoder( |
|
embed_dim=self.sam_prompt_embed_dim, |
|
image_embedding_size=( |
|
self.sam_image_embedding_size, |
|
self.sam_image_embedding_size, |
|
), |
|
input_image_size=(self.image_size, self.image_size), |
|
mask_in_chans=16, |
|
) |
|
self.sam_mask_decoder = MaskDecoder( |
|
num_multimask_outputs=3, |
|
transformer=TwoWayTransformer( |
|
depth=2, |
|
embedding_dim=self.sam_prompt_embed_dim, |
|
mlp_dim=2048, |
|
num_heads=8, |
|
), |
|
transformer_dim=self.sam_prompt_embed_dim, |
|
iou_head_depth=3, |
|
iou_head_hidden_dim=256, |
|
use_high_res_features=self.use_high_res_features_in_sam, |
|
iou_prediction_use_sigmoid=self.iou_prediction_use_sigmoid, |
|
pred_obj_scores=self.pred_obj_scores, |
|
pred_obj_scores_mlp=self.pred_obj_scores_mlp, |
|
use_multimask_token_for_obj_ptr=self.use_multimask_token_for_obj_ptr, |
|
**(self.sam_mask_decoder_extra_args or {}), |
|
) |
|
if self.use_obj_ptrs_in_encoder: |
|
|
|
self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim) |
|
if self.use_mlp_for_obj_ptr_proj: |
|
self.obj_ptr_proj = MLP( |
|
self.hidden_dim, self.hidden_dim, self.hidden_dim, 3 |
|
) |
|
else: |
|
self.obj_ptr_proj = torch.nn.Identity() |
|
if self.proj_tpos_enc_in_obj_ptrs: |
|
|
|
|
|
self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim) |
|
else: |
|
self.obj_ptr_tpos_proj = torch.nn.Identity() |
|
|
|
def _forward_sam_heads( |
|
self, |
|
backbone_features, |
|
point_inputs=None, |
|
mask_inputs=None, |
|
high_res_features=None, |
|
multimask_output=False, |
|
): |
|
""" |
|
Forward SAM prompt encoders and mask heads. |
|
|
|
Inputs: |
|
- backbone_features: image features of [B, C, H, W] shape |
|
- point_inputs: a dictionary with "point_coords" and "point_labels", where |
|
1) "point_coords" has [B, P, 2] shape and float32 dtype and contains the |
|
absolute pixel-unit coordinate in (x, y) format of the P input points |
|
2) "point_labels" has shape [B, P] and int32 dtype, where 1 means |
|
positive clicks, 0 means negative clicks, and -1 means padding |
|
- mask_inputs: a mask of [B, 1, H*16, W*16] shape, float or bool, with the |
|
same spatial size as the image. |
|
- high_res_features: either 1) None or 2) or a list of length 2 containing |
|
two feature maps of [B, C, 4*H, 4*W] and [B, C, 2*H, 2*W] shapes respectively, |
|
which will be used as high-resolution feature maps for SAM decoder. |
|
- multimask_output: if it's True, we output 3 candidate masks and their 3 |
|
corresponding IoU estimates, and if it's False, we output only 1 mask and |
|
its corresponding IoU estimate. |
|
|
|
Outputs: |
|
- low_res_multimasks: [B, M, H*4, W*4] shape (where M = 3 if |
|
`multimask_output=True` and M = 1 if `multimask_output=False`), the SAM |
|
output mask logits (before sigmoid) for the low-resolution masks, with 4x |
|
the resolution (1/4 stride) of the input backbone_features. |
|
- high_res_multimasks: [B, M, H*16, W*16] shape (where M = 3 |
|
if `multimask_output=True` and M = 1 if `multimask_output=False`), |
|
upsampled from the low-resolution masks, with shape size as the image |
|
(stride is 1 pixel). |
|
- ious, [B, M] shape, where (where M = 3 if `multimask_output=True` and M = 1 |
|
if `multimask_output=False`), the estimated IoU of each output mask. |
|
- low_res_masks: [B, 1, H*4, W*4] shape, the best mask in `low_res_multimasks`. |
|
If `multimask_output=True`, it's the mask with the highest IoU estimate. |
|
If `multimask_output=False`, it's the same as `low_res_multimasks`. |
|
- high_res_masks: [B, 1, H*16, W*16] shape, the best mask in `high_res_multimasks`. |
|
If `multimask_output=True`, it's the mask with the highest IoU estimate. |
|
If `multimask_output=False`, it's the same as `high_res_multimasks`. |
|
- obj_ptr: [B, C] shape, the object pointer vector for the output mask, extracted |
|
based on the output token from the SAM mask decoder. |
|
""" |
|
B = backbone_features.size(0) |
|
device = backbone_features.device |
|
assert backbone_features.size(1) == self.sam_prompt_embed_dim |
|
assert backbone_features.size(2) == self.sam_image_embedding_size |
|
assert backbone_features.size(3) == self.sam_image_embedding_size |
|
|
|
|
|
if point_inputs is not None: |
|
sam_point_coords = point_inputs["point_coords"] |
|
sam_point_labels = point_inputs["point_labels"] |
|
assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B |
|
else: |
|
|
|
sam_point_coords = torch.zeros(B, 1, 2, device=device) |
|
sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device) |
|
|
|
|
|
if mask_inputs is not None: |
|
|
|
|
|
assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1) |
|
if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size: |
|
sam_mask_prompt = F.interpolate( |
|
mask_inputs.float(), |
|
size=self.sam_prompt_encoder.mask_input_size, |
|
align_corners=False, |
|
mode="bilinear", |
|
antialias=True, |
|
) |
|
else: |
|
sam_mask_prompt = mask_inputs |
|
else: |
|
|
|
|
|
sam_mask_prompt = None |
|
|
|
sparse_embeddings, dense_embeddings = self.sam_prompt_encoder( |
|
points=(sam_point_coords, sam_point_labels), |
|
boxes=None, |
|
masks=sam_mask_prompt, |
|
) |
|
( |
|
low_res_multimasks, |
|
ious, |
|
sam_output_tokens, |
|
object_score_logits, |
|
) = self.sam_mask_decoder( |
|
image_embeddings=backbone_features, |
|
image_pe=self.sam_prompt_encoder.get_dense_pe(), |
|
sparse_prompt_embeddings=sparse_embeddings, |
|
dense_prompt_embeddings=dense_embeddings, |
|
multimask_output=multimask_output, |
|
repeat_image=False, |
|
high_res_features=high_res_features, |
|
) |
|
if self.pred_obj_scores: |
|
is_obj_appearing = object_score_logits > 0 |
|
|
|
|
|
|
|
low_res_multimasks = torch.where( |
|
is_obj_appearing[:, None, None], |
|
low_res_multimasks, |
|
NO_OBJ_SCORE, |
|
) |
|
|
|
|
|
|
|
_dtype = low_res_multimasks.dtype |
|
|
|
high_res_multimasks = F.interpolate( |
|
low_res_multimasks.float(), |
|
size=(self.image_size, self.image_size), |
|
mode="bilinear", |
|
align_corners=False, |
|
).to(_dtype) |
|
|
|
sam_output_token = sam_output_tokens[:, 0] |
|
if multimask_output: |
|
|
|
best_iou_inds = torch.argmax(ious, dim=-1) |
|
batch_inds = torch.arange(B, device=device) |
|
low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1) |
|
high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1) |
|
if sam_output_tokens.size(1) > 1: |
|
sam_output_token = sam_output_tokens[batch_inds, best_iou_inds] |
|
else: |
|
low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks |
|
|
|
|
|
obj_ptr = self.obj_ptr_proj(sam_output_token) |
|
if self.pred_obj_scores: |
|
|
|
if self.soft_no_obj_ptr: |
|
|
|
assert not self.teacher_force_obj_scores_for_mem |
|
lambda_is_obj_appearing = object_score_logits.sigmoid() |
|
else: |
|
lambda_is_obj_appearing = is_obj_appearing.float() |
|
|
|
if self.fixed_no_obj_ptr: |
|
obj_ptr = lambda_is_obj_appearing * obj_ptr |
|
obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr |
|
|
|
return ( |
|
low_res_multimasks, |
|
high_res_multimasks, |
|
ious, |
|
low_res_masks, |
|
high_res_masks, |
|
obj_ptr, |
|
object_score_logits, |
|
) |
|
|
|
def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs): |
|
""" |
|
Directly turn binary `mask_inputs` into a output mask logits without using SAM. |
|
(same input and output shapes as in _forward_sam_heads above). |
|
""" |
|
|
|
out_scale, out_bias = 20.0, -10.0 |
|
mask_inputs_float = mask_inputs.float() |
|
high_res_masks = mask_inputs_float * out_scale + out_bias |
|
low_res_masks = F.interpolate( |
|
high_res_masks, |
|
size=(high_res_masks.size(-2) // 4, high_res_masks.size(-1) // 4), |
|
align_corners=False, |
|
mode="bilinear", |
|
antialias=True, |
|
) |
|
|
|
ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float() |
|
if not self.use_obj_ptrs_in_encoder: |
|
|
|
obj_ptr = torch.zeros( |
|
mask_inputs.size(0), self.hidden_dim, device=mask_inputs.device |
|
) |
|
else: |
|
|
|
_, _, _, _, _, obj_ptr, _ = self._forward_sam_heads( |
|
backbone_features=backbone_features, |
|
mask_inputs=self.mask_downsample(mask_inputs_float), |
|
high_res_features=high_res_features, |
|
) |
|
|
|
|
|
|
|
is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1) |
|
is_obj_appearing = is_obj_appearing[..., None] |
|
lambda_is_obj_appearing = is_obj_appearing.float() |
|
object_score_logits = out_scale * lambda_is_obj_appearing + out_bias |
|
if self.pred_obj_scores: |
|
if self.fixed_no_obj_ptr: |
|
obj_ptr = lambda_is_obj_appearing * obj_ptr |
|
obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr |
|
|
|
return ( |
|
low_res_masks, |
|
high_res_masks, |
|
ious, |
|
low_res_masks, |
|
high_res_masks, |
|
obj_ptr, |
|
object_score_logits, |
|
) |
|
|
|
def forward_image(self, img_batch: torch.Tensor): |
|
"""Get the image feature on the input batch.""" |
|
backbone_out = self.image_encoder(img_batch) |
|
if self.use_high_res_features_in_sam: |
|
|
|
|
|
backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0( |
|
backbone_out["backbone_fpn"][0] |
|
) |
|
backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1( |
|
backbone_out["backbone_fpn"][1] |
|
) |
|
return backbone_out |
|
|
|
def _prepare_backbone_features(self, backbone_out): |
|
"""Prepare and flatten visual features.""" |
|
backbone_out = backbone_out.copy() |
|
assert len(backbone_out["backbone_fpn"]) == len(backbone_out["vision_pos_enc"]) |
|
assert len(backbone_out["backbone_fpn"]) >= self.num_feature_levels |
|
|
|
feature_maps = backbone_out["backbone_fpn"][-self.num_feature_levels :] |
|
vision_pos_embeds = backbone_out["vision_pos_enc"][-self.num_feature_levels :] |
|
|
|
feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds] |
|
|
|
vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps] |
|
vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds] |
|
|
|
return backbone_out, vision_feats, vision_pos_embeds, feat_sizes |
|
|
|
def _prepare_memory_conditioned_features( |
|
self, |
|
frame_idx, |
|
is_init_cond_frame, |
|
current_vision_feats, |
|
current_vision_pos_embeds, |
|
feat_sizes, |
|
output_dict, |
|
num_frames, |
|
track_in_reverse=False, |
|
): |
|
"""Fuse the current frame's visual feature map with previous memory.""" |
|
B = current_vision_feats[-1].size(1) |
|
C = self.hidden_dim |
|
H, W = feat_sizes[-1] |
|
device = current_vision_feats[-1].device |
|
|
|
|
|
if self.num_maskmem == 0: |
|
pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W) |
|
return pix_feat |
|
|
|
num_obj_ptr_tokens = 0 |
|
|
|
if not is_init_cond_frame: |
|
|
|
to_cat_memory, to_cat_memory_pos_embed = [], [] |
|
|
|
|
|
assert len(output_dict["cond_frame_outputs"]) > 0 |
|
|
|
cond_outputs = output_dict["cond_frame_outputs"] |
|
selected_cond_outputs, unselected_cond_outputs = select_closest_cond_frames( |
|
frame_idx, cond_outputs, self.max_cond_frames_in_attn |
|
) |
|
t_pos_and_prevs = [(0, out) for out in selected_cond_outputs.values()] |
|
|
|
|
|
|
|
|
|
r = self.memory_temporal_stride_for_eval |
|
for t_pos in range(1, self.num_maskmem): |
|
t_rel = self.num_maskmem - t_pos |
|
if t_rel == 1: |
|
|
|
if not track_in_reverse: |
|
|
|
prev_frame_idx = frame_idx - t_rel |
|
else: |
|
|
|
prev_frame_idx = frame_idx + t_rel |
|
else: |
|
|
|
if not track_in_reverse: |
|
|
|
|
|
prev_frame_idx = ((frame_idx - 2) // r) * r |
|
|
|
prev_frame_idx = prev_frame_idx - (t_rel - 2) * r |
|
else: |
|
|
|
|
|
prev_frame_idx = -(-(frame_idx + 2) // r) * r |
|
|
|
prev_frame_idx = prev_frame_idx + (t_rel - 2) * r |
|
out = output_dict["non_cond_frame_outputs"].get(prev_frame_idx, None) |
|
if out is None: |
|
|
|
|
|
out = unselected_cond_outputs.get(prev_frame_idx, None) |
|
t_pos_and_prevs.append((t_pos, out)) |
|
|
|
for t_pos, prev in t_pos_and_prevs: |
|
if prev is None: |
|
continue |
|
|
|
|
|
feats = prev["maskmem_features"].cuda(non_blocking=True) |
|
to_cat_memory.append(feats.flatten(2).permute(2, 0, 1)) |
|
|
|
maskmem_enc = prev["maskmem_pos_enc"][-1].cuda() |
|
maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1) |
|
|
|
maskmem_enc = ( |
|
maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t_pos - 1] |
|
) |
|
to_cat_memory_pos_embed.append(maskmem_enc) |
|
|
|
|
|
if self.use_obj_ptrs_in_encoder: |
|
max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder) |
|
|
|
|
|
if not self.training and self.only_obj_ptrs_in_the_past_for_eval: |
|
ptr_cond_outputs = { |
|
t: out |
|
for t, out in selected_cond_outputs.items() |
|
if (t >= frame_idx if track_in_reverse else t <= frame_idx) |
|
} |
|
else: |
|
ptr_cond_outputs = selected_cond_outputs |
|
pos_and_ptrs = [ |
|
|
|
(abs(frame_idx - t), out["obj_ptr"]) |
|
for t, out in ptr_cond_outputs.items() |
|
] |
|
|
|
for t_diff in range(1, max_obj_ptrs_in_encoder): |
|
t = frame_idx + t_diff if track_in_reverse else frame_idx - t_diff |
|
if t < 0 or (num_frames is not None and t >= num_frames): |
|
break |
|
out = output_dict["non_cond_frame_outputs"].get( |
|
t, unselected_cond_outputs.get(t, None) |
|
) |
|
if out is not None: |
|
pos_and_ptrs.append((t_diff, out["obj_ptr"])) |
|
|
|
if len(pos_and_ptrs) > 0: |
|
pos_list, ptrs_list = zip(*pos_and_ptrs) |
|
|
|
obj_ptrs = torch.stack(ptrs_list, dim=0) |
|
|
|
|
|
if self.add_tpos_enc_to_obj_ptrs: |
|
t_diff_max = max_obj_ptrs_in_encoder - 1 |
|
tpos_dim = C if self.proj_tpos_enc_in_obj_ptrs else self.mem_dim |
|
obj_pos = torch.tensor(pos_list, device=device) |
|
obj_pos = get_1d_sine_pe(obj_pos / t_diff_max, dim=tpos_dim) |
|
obj_pos = self.obj_ptr_tpos_proj(obj_pos) |
|
obj_pos = obj_pos.unsqueeze(1).expand(-1, B, self.mem_dim) |
|
else: |
|
obj_pos = obj_ptrs.new_zeros(len(pos_list), B, self.mem_dim) |
|
if self.mem_dim < C: |
|
|
|
obj_ptrs = obj_ptrs.reshape( |
|
-1, B, C // self.mem_dim, self.mem_dim |
|
) |
|
obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1) |
|
obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0) |
|
to_cat_memory.append(obj_ptrs) |
|
to_cat_memory_pos_embed.append(obj_pos) |
|
num_obj_ptr_tokens = obj_ptrs.shape[0] |
|
else: |
|
num_obj_ptr_tokens = 0 |
|
else: |
|
|
|
if self.directly_add_no_mem_embed: |
|
|
|
pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed |
|
pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W) |
|
return pix_feat_with_mem |
|
|
|
|
|
to_cat_memory = [self.no_mem_embed.expand(1, B, self.mem_dim)] |
|
to_cat_memory_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)] |
|
|
|
|
|
memory = torch.cat(to_cat_memory, dim=0) |
|
memory_pos_embed = torch.cat(to_cat_memory_pos_embed, dim=0) |
|
|
|
pix_feat_with_mem = self.memory_attention( |
|
curr=current_vision_feats, |
|
curr_pos=current_vision_pos_embeds, |
|
memory=memory, |
|
memory_pos=memory_pos_embed, |
|
num_obj_ptr_tokens=num_obj_ptr_tokens, |
|
) |
|
|
|
pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W) |
|
return pix_feat_with_mem |
|
|
|
def _encode_new_memory( |
|
self, |
|
current_vision_feats, |
|
feat_sizes, |
|
pred_masks_high_res, |
|
is_mask_from_pts, |
|
): |
|
"""Encode the current image and its prediction into a memory feature.""" |
|
B = current_vision_feats[-1].size(1) |
|
C = self.hidden_dim |
|
H, W = feat_sizes[-1] |
|
|
|
pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W) |
|
if self.non_overlap_masks_for_mem_enc and not self.training: |
|
|
|
|
|
|
|
pred_masks_high_res = self._apply_non_overlapping_constraints( |
|
pred_masks_high_res |
|
) |
|
|
|
binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts |
|
if binarize and not self.training: |
|
mask_for_mem = (pred_masks_high_res > 0).float() |
|
else: |
|
|
|
mask_for_mem = torch.sigmoid(pred_masks_high_res) |
|
|
|
if self.sigmoid_scale_for_mem_enc != 1.0: |
|
mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc |
|
if self.sigmoid_bias_for_mem_enc != 0.0: |
|
mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc |
|
maskmem_out = self.memory_encoder( |
|
pix_feat, mask_for_mem, skip_mask_sigmoid=True |
|
) |
|
maskmem_features = maskmem_out["vision_features"] |
|
maskmem_pos_enc = maskmem_out["vision_pos_enc"] |
|
|
|
return maskmem_features, maskmem_pos_enc |
|
|
|
def track_step( |
|
self, |
|
frame_idx, |
|
is_init_cond_frame, |
|
current_vision_feats, |
|
current_vision_pos_embeds, |
|
feat_sizes, |
|
point_inputs, |
|
mask_inputs, |
|
output_dict, |
|
num_frames, |
|
track_in_reverse=False, |
|
|
|
|
|
|
|
|
|
|
|
run_mem_encoder=True, |
|
|
|
prev_sam_mask_logits=None, |
|
): |
|
current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs} |
|
|
|
if len(current_vision_feats) > 1: |
|
high_res_features = [ |
|
x.permute(1, 2, 0).view(x.size(1), x.size(2), *s) |
|
for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1]) |
|
] |
|
else: |
|
high_res_features = None |
|
if mask_inputs is not None and self.use_mask_input_as_output_without_sam: |
|
|
|
|
|
pix_feat = current_vision_feats[-1].permute(1, 2, 0) |
|
pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1]) |
|
sam_outputs = self._use_mask_as_output( |
|
pix_feat, high_res_features, mask_inputs |
|
) |
|
else: |
|
|
|
pix_feat_with_mem = self._prepare_memory_conditioned_features( |
|
frame_idx=frame_idx, |
|
is_init_cond_frame=is_init_cond_frame, |
|
current_vision_feats=current_vision_feats[-1:], |
|
current_vision_pos_embeds=current_vision_pos_embeds[-1:], |
|
feat_sizes=feat_sizes[-1:], |
|
output_dict=output_dict, |
|
num_frames=num_frames, |
|
track_in_reverse=track_in_reverse, |
|
) |
|
|
|
|
|
|
|
|
|
if prev_sam_mask_logits is not None: |
|
assert point_inputs is not None and mask_inputs is None |
|
mask_inputs = prev_sam_mask_logits |
|
multimask_output = self._use_multimask(is_init_cond_frame, point_inputs) |
|
sam_outputs = self._forward_sam_heads( |
|
backbone_features=pix_feat_with_mem, |
|
point_inputs=point_inputs, |
|
mask_inputs=mask_inputs, |
|
high_res_features=high_res_features, |
|
multimask_output=multimask_output, |
|
) |
|
( |
|
_, |
|
_, |
|
_, |
|
low_res_masks, |
|
high_res_masks, |
|
obj_ptr, |
|
_, |
|
) = sam_outputs |
|
|
|
current_out["pred_masks"] = low_res_masks |
|
current_out["pred_masks_high_res"] = high_res_masks |
|
current_out["obj_ptr"] = obj_ptr |
|
|
|
|
|
|
|
if run_mem_encoder and self.num_maskmem > 0: |
|
high_res_masks_for_mem_enc = high_res_masks |
|
maskmem_features, maskmem_pos_enc = self._encode_new_memory( |
|
current_vision_feats=current_vision_feats, |
|
feat_sizes=feat_sizes, |
|
pred_masks_high_res=high_res_masks_for_mem_enc, |
|
is_mask_from_pts=(point_inputs is not None), |
|
) |
|
current_out["maskmem_features"] = maskmem_features |
|
current_out["maskmem_pos_enc"] = maskmem_pos_enc |
|
else: |
|
current_out["maskmem_features"] = None |
|
current_out["maskmem_pos_enc"] = None |
|
|
|
return current_out |
|
|
|
def _use_multimask(self, is_init_cond_frame, point_inputs): |
|
"""Whether to use multimask output in the SAM head.""" |
|
num_pts = 0 if point_inputs is None else point_inputs["point_labels"].size(1) |
|
multimask_output = ( |
|
self.multimask_output_in_sam |
|
and (is_init_cond_frame or self.multimask_output_for_tracking) |
|
and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num) |
|
) |
|
return multimask_output |
|
|
|
def _apply_non_overlapping_constraints(self, pred_masks): |
|
""" |
|
Apply non-overlapping constraints to the object scores in pred_masks. Here we |
|
keep only the highest scoring object at each spatial location in pred_masks. |
|
""" |
|
batch_size = pred_masks.size(0) |
|
if batch_size == 1: |
|
return pred_masks |
|
|
|
device = pred_masks.device |
|
|
|
max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True) |
|
|
|
batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None] |
|
keep = max_obj_inds == batch_obj_inds |
|
|
|
|
|
pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0)) |
|
return pred_masks |
|
|
|
class SAM2Base(SAM2Base_): |
|
|
|
def track_step( |
|
self, |
|
frame_idx, |
|
is_init_cond_frame, |
|
current_vision_feats, |
|
current_vision_pos_embeds, |
|
feat_sizes, |
|
point_inputs, |
|
mask_inputs, |
|
output_dict, |
|
num_frames, |
|
track_in_reverse=False, |
|
|
|
|
|
|
|
|
|
|
|
run_mem_encoder=True, |
|
|
|
prev_sam_mask_logits=None, |
|
|
|
language_embd=None, |
|
): |
|
current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs} |
|
|
|
if len(current_vision_feats) > 1: |
|
high_res_features = [ |
|
x.permute(1, 2, 0).view(x.size(1), x.size(2), *s) |
|
for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1]) |
|
] |
|
else: |
|
high_res_features = None |
|
if mask_inputs is not None and self.use_mask_input_as_output_without_sam: |
|
|
|
|
|
pix_feat = current_vision_feats[-1].permute(1, 2, 0) |
|
pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1]) |
|
sam_outputs = self._use_mask_as_output( |
|
pix_feat, high_res_features, mask_inputs |
|
) |
|
else: |
|
|
|
pix_feat_with_mem = self._prepare_memory_conditioned_features( |
|
frame_idx=frame_idx, |
|
is_init_cond_frame=is_init_cond_frame, |
|
current_vision_feats=current_vision_feats[-1:], |
|
current_vision_pos_embeds=current_vision_pos_embeds[-1:], |
|
feat_sizes=feat_sizes[-1:], |
|
output_dict=output_dict, |
|
num_frames=num_frames, |
|
track_in_reverse=track_in_reverse, |
|
) |
|
|
|
|
|
|
|
|
|
if prev_sam_mask_logits is not None: |
|
assert point_inputs is not None and mask_inputs is None |
|
mask_inputs = prev_sam_mask_logits |
|
multimask_output = self._use_multimask(is_init_cond_frame, point_inputs) |
|
sam_outputs = self._forward_sam_heads( |
|
backbone_features=pix_feat_with_mem, |
|
point_inputs=point_inputs, |
|
mask_inputs=mask_inputs, |
|
high_res_features=high_res_features, |
|
multimask_output=multimask_output, |
|
|
|
language_embd=language_embd, |
|
) |
|
( |
|
_, |
|
_, |
|
_, |
|
low_res_masks, |
|
high_res_masks, |
|
obj_ptr, |
|
_, |
|
) = sam_outputs |
|
|
|
current_out["pred_masks"] = low_res_masks |
|
current_out["pred_masks_high_res"] = high_res_masks |
|
current_out["obj_ptr"] = obj_ptr |
|
|
|
|
|
|
|
if run_mem_encoder and self.num_maskmem > 0: |
|
high_res_masks_for_mem_enc = high_res_masks |
|
maskmem_features, maskmem_pos_enc = self._encode_new_memory( |
|
current_vision_feats=current_vision_feats, |
|
feat_sizes=feat_sizes, |
|
pred_masks_high_res=high_res_masks_for_mem_enc, |
|
is_mask_from_pts=(point_inputs is not None), |
|
) |
|
current_out["maskmem_features"] = maskmem_features |
|
current_out["maskmem_pos_enc"] = maskmem_pos_enc |
|
else: |
|
current_out["maskmem_features"] = None |
|
current_out["maskmem_pos_enc"] = None |
|
|
|
return current_out |
|
|
|
|
|
def _forward_sam_heads( |
|
self, |
|
backbone_features, |
|
point_inputs=None, |
|
mask_inputs=None, |
|
high_res_features=None, |
|
multimask_output=False, |
|
|
|
language_embd=None, |
|
): |
|
""" |
|
Forward SAM prompt encoders and mask heads. |
|
|
|
Inputs: |
|
- backbone_features: image features of [B, C, H, W] shape |
|
- point_inputs: a dictionary with "point_coords" and "point_labels", where |
|
1) "point_coords" has [B, P, 2] shape and float32 dtype and contains the |
|
absolute pixel-unit coordinate in (x, y) format of the P input points |
|
2) "point_labels" has shape [B, P] and int32 dtype, where 1 means |
|
positive clicks, 0 means negative clicks, and -1 means padding |
|
- mask_inputs: a mask of [B, 1, H*16, W*16] shape, float or bool, with the |
|
same spatial size as the image. |
|
- high_res_features: either 1) None or 2) or a list of length 2 containing |
|
two feature maps of [B, C, 4*H, 4*W] and [B, C, 2*H, 2*W] shapes respectively, |
|
which will be used as high-resolution feature maps for SAM decoder. |
|
- multimask_output: if it's True, we output 3 candidate masks and their 3 |
|
corresponding IoU estimates, and if it's False, we output only 1 mask and |
|
its corresponding IoU estimate. |
|
|
|
Outputs: |
|
- low_res_multimasks: [B, M, H*4, W*4] shape (where M = 3 if |
|
`multimask_output=True` and M = 1 if `multimask_output=False`), the SAM |
|
output mask logits (before sigmoid) for the low-resolution masks, with 4x |
|
the resolution (1/4 stride) of the input backbone_features. |
|
- high_res_multimasks: [B, M, H*16, W*16] shape (where M = 3 |
|
if `multimask_output=True` and M = 1 if `multimask_output=False`), |
|
upsampled from the low-resolution masks, with shape size as the image |
|
(stride is 1 pixel). |
|
- ious, [B, M] shape, where (where M = 3 if `multimask_output=True` and M = 1 |
|
if `multimask_output=False`), the estimated IoU of each output mask. |
|
- low_res_masks: [B, 1, H*4, W*4] shape, the best mask in `low_res_multimasks`. |
|
If `multimask_output=True`, it's the mask with the highest IoU estimate. |
|
If `multimask_output=False`, it's the same as `low_res_multimasks`. |
|
- high_res_masks: [B, 1, H*16, W*16] shape, the best mask in `high_res_multimasks`. |
|
If `multimask_output=True`, it's the mask with the highest IoU estimate. |
|
If `multimask_output=False`, it's the same as `high_res_multimasks`. |
|
- obj_ptr: [B, C] shape, the object pointer vector for the output mask, extracted |
|
based on the output token from the SAM mask decoder. |
|
""" |
|
B = backbone_features.size(0) |
|
device = backbone_features.device |
|
assert backbone_features.size(1) == self.sam_prompt_embed_dim |
|
assert backbone_features.size(2) == self.sam_image_embedding_size |
|
assert backbone_features.size(3) == self.sam_image_embedding_size |
|
|
|
|
|
if point_inputs is not None: |
|
sam_point_coords = point_inputs["point_coords"] |
|
sam_point_labels = point_inputs["point_labels"] |
|
assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B |
|
else: |
|
|
|
sam_point_coords = torch.zeros(B, 1, 2, device=device) |
|
sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device) |
|
|
|
|
|
if mask_inputs is not None: |
|
|
|
|
|
assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1) |
|
if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size: |
|
sam_mask_prompt = F.interpolate( |
|
mask_inputs.float(), |
|
size=self.sam_prompt_encoder.mask_input_size, |
|
align_corners=False, |
|
mode="bilinear", |
|
antialias=True, |
|
) |
|
else: |
|
sam_mask_prompt = mask_inputs |
|
else: |
|
|
|
|
|
sam_mask_prompt = None |
|
|
|
sparse_embeddings, dense_embeddings = self.sam_prompt_encoder( |
|
points=(sam_point_coords, sam_point_labels), |
|
boxes=None, |
|
masks=sam_mask_prompt, |
|
) |
|
|
|
|
|
if language_embd is not None: |
|
|
|
assert sparse_embeddings.size(0) == language_embd.size(0) |
|
assert sparse_embeddings.size(2) == language_embd.size(2) |
|
sparse_embeddings = torch.cat([sparse_embeddings, language_embd], dim=1) |
|
|
|
( |
|
low_res_multimasks, |
|
ious, |
|
sam_output_tokens, |
|
object_score_logits, |
|
) = self.sam_mask_decoder( |
|
image_embeddings=backbone_features, |
|
image_pe=self.sam_prompt_encoder.get_dense_pe(), |
|
sparse_prompt_embeddings=sparse_embeddings, |
|
dense_prompt_embeddings=dense_embeddings, |
|
multimask_output=multimask_output, |
|
repeat_image=False, |
|
high_res_features=high_res_features, |
|
) |
|
if self.pred_obj_scores: |
|
is_obj_appearing = object_score_logits > 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
low_res_multimasks = low_res_multimasks.float() |
|
high_res_multimasks = F.interpolate( |
|
low_res_multimasks, |
|
size=(self.image_size, self.image_size), |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
|
|
sam_output_token = sam_output_tokens[:, 0] |
|
if multimask_output: |
|
|
|
best_iou_inds = torch.argmax(ious, dim=-1) |
|
batch_inds = torch.arange(B, device=device) |
|
low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1) |
|
high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1) |
|
if sam_output_tokens.size(1) > 1: |
|
sam_output_token = sam_output_tokens[batch_inds, best_iou_inds] |
|
else: |
|
low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks |
|
|
|
|
|
obj_ptr = self.obj_ptr_proj(sam_output_token) |
|
if self.pred_obj_scores: |
|
|
|
if self.soft_no_obj_ptr: |
|
|
|
assert not self.teacher_force_obj_scores_for_mem |
|
lambda_is_obj_appearing = object_score_logits.sigmoid() |
|
else: |
|
lambda_is_obj_appearing = is_obj_appearing.float() |
|
|
|
if self.fixed_no_obj_ptr: |
|
obj_ptr = lambda_is_obj_appearing * obj_ptr |
|
obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr |
|
|
|
return ( |
|
low_res_multimasks, |
|
high_res_multimasks, |
|
ious, |
|
low_res_masks, |
|
high_res_masks, |
|
obj_ptr, |
|
object_score_logits, |
|
) |
|
|
|
|
|
def _obj_id_to_idx(inference_state, obj_id): |
|
"""Map client-side object id to model-side object index.""" |
|
obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None) |
|
if obj_idx is not None: |
|
return obj_idx |
|
|
|
|
|
|
|
allow_new_object = not inference_state["tracking_has_started"] |
|
if allow_new_object: |
|
|
|
obj_idx = len(inference_state["obj_id_to_idx"]) |
|
inference_state["obj_id_to_idx"][obj_id] = obj_idx |
|
inference_state["obj_idx_to_id"][obj_idx] = obj_id |
|
inference_state["obj_ids"] = list(inference_state["obj_id_to_idx"]) |
|
|
|
inference_state["point_inputs_per_obj"][obj_idx] = {} |
|
inference_state["mask_inputs_per_obj"][obj_idx] = {} |
|
inference_state["output_dict_per_obj"][obj_idx] = { |
|
"cond_frame_outputs": {}, |
|
"non_cond_frame_outputs": {}, |
|
} |
|
inference_state["temp_output_dict_per_obj"][obj_idx] = { |
|
"cond_frame_outputs": {}, |
|
"non_cond_frame_outputs": {}, |
|
} |
|
return obj_idx |
|
else: |
|
raise RuntimeError( |
|
f"Cannot add new object id {obj_id} after tracking starts. " |
|
f"All existing object ids: {inference_state['obj_ids']}. " |
|
f"Please call 'reset_state' to restart from scratch." |
|
) |
|
|
|
|
|
def _get_maskmem_pos_enc(inference_state, current_out): |
|
""" |
|
`maskmem_pos_enc` is the same across frames and objects, so we cache it as |
|
a constant in the inference session to reduce session storage size. |
|
""" |
|
model_constants = inference_state["constants"] |
|
|
|
out_maskmem_pos_enc = current_out["maskmem_pos_enc"] |
|
if out_maskmem_pos_enc is not None: |
|
if "maskmem_pos_enc" not in model_constants: |
|
assert isinstance(out_maskmem_pos_enc, list) |
|
|
|
maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc] |
|
model_constants["maskmem_pos_enc"] = maskmem_pos_enc |
|
else: |
|
maskmem_pos_enc = model_constants["maskmem_pos_enc"] |
|
|
|
batch_size = out_maskmem_pos_enc[0].size(0) |
|
expanded_maskmem_pos_enc = [ |
|
x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc |
|
] |
|
else: |
|
expanded_maskmem_pos_enc = None |
|
return expanded_maskmem_pos_enc |
|
|
|
|
|
def _obj_idx_to_id(inference_state, obj_idx): |
|
"""Map model-side object index to client-side object id.""" |
|
return inference_state["obj_idx_to_id"][obj_idx] |
|
|
|
|
|
def _get_obj_num(inference_state): |
|
"""Get the total number of unique object ids received so far in this session.""" |
|
return len(inference_state["obj_idx_to_id"]) |
|
|
|
|
|
class SAM2VideoPredictor(SAM2Base): |
|
"""The predictor class to handle user interactions and manage inference states.""" |
|
|
|
def __init__( |
|
self, |
|
fill_hole_area=0, |
|
|
|
non_overlap_masks=False, |
|
|
|
|
|
clear_non_cond_mem_around_input=False, |
|
|
|
clear_non_cond_mem_for_multi_obj=False, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
self.fill_hole_area = fill_hole_area |
|
self.non_overlap_masks = non_overlap_masks |
|
self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input |
|
self.clear_non_cond_mem_for_multi_obj = clear_non_cond_mem_for_multi_obj |
|
|
|
def _get_image_feature(self, inference_state, frame_idx, batch_size): |
|
"""Compute the image features on a given frame.""" |
|
|
|
image, backbone_out = inference_state["cached_features"].get( |
|
frame_idx, (None, None) |
|
) |
|
if backbone_out is None: |
|
|
|
|
|
image = inference_state["images"][frame_idx].cuda().unsqueeze(0) |
|
backbone_out = self.forward_image(image) |
|
|
|
|
|
inference_state["cached_features"] = {frame_idx: (image, backbone_out)} |
|
|
|
|
|
expanded_image = image.expand(batch_size, -1, -1, -1) |
|
expanded_backbone_out = { |
|
"backbone_fpn": backbone_out["backbone_fpn"].copy(), |
|
"vision_pos_enc": backbone_out["vision_pos_enc"].copy(), |
|
} |
|
for i, feat in enumerate(expanded_backbone_out["backbone_fpn"]): |
|
expanded_backbone_out["backbone_fpn"][i] = feat.expand( |
|
batch_size, -1, -1, -1 |
|
) |
|
for i, pos in enumerate(expanded_backbone_out["vision_pos_enc"]): |
|
pos = pos.expand(batch_size, -1, -1, -1) |
|
expanded_backbone_out["vision_pos_enc"][i] = pos |
|
|
|
features = self._prepare_backbone_features(expanded_backbone_out) |
|
features = (expanded_image,) + features |
|
return features |
|
|
|
|
|
def _run_single_frame_inference( |
|
self, |
|
inference_state, |
|
output_dict, |
|
frame_idx, |
|
batch_size, |
|
is_init_cond_frame, |
|
point_inputs, |
|
mask_inputs, |
|
reverse, |
|
run_mem_encoder, |
|
prev_sam_mask_logits=None, |
|
|
|
language_embd=None, |
|
): |
|
"""Run tracking on a single frame based on current inputs and previous memory.""" |
|
|
|
( |
|
_, |
|
_, |
|
current_vision_feats, |
|
current_vision_pos_embeds, |
|
feat_sizes, |
|
) = self._get_image_feature(inference_state, frame_idx, batch_size) |
|
|
|
|
|
assert point_inputs is None or mask_inputs is None |
|
current_out = self.track_step( |
|
frame_idx=frame_idx, |
|
is_init_cond_frame=is_init_cond_frame, |
|
current_vision_feats=current_vision_feats, |
|
current_vision_pos_embeds=current_vision_pos_embeds, |
|
feat_sizes=feat_sizes, |
|
point_inputs=point_inputs, |
|
mask_inputs=mask_inputs, |
|
output_dict=output_dict, |
|
num_frames=inference_state["num_frames"], |
|
track_in_reverse=reverse, |
|
run_mem_encoder=run_mem_encoder, |
|
prev_sam_mask_logits=prev_sam_mask_logits, |
|
language_embd=language_embd, |
|
) |
|
|
|
|
|
storage_device = inference_state["storage_device"] |
|
maskmem_features = current_out["maskmem_features"] |
|
if maskmem_features is not None: |
|
maskmem_features = maskmem_features.to(torch.bfloat16) |
|
maskmem_features = maskmem_features.to(storage_device, non_blocking=True) |
|
pred_masks_gpu = current_out["pred_masks"] |
|
|
|
if self.fill_hole_area > 0: |
|
pred_masks_gpu = fill_holes_in_mask_scores( |
|
pred_masks_gpu, self.fill_hole_area |
|
) |
|
pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True) |
|
|
|
maskmem_pos_enc = _get_maskmem_pos_enc(inference_state, current_out) |
|
|
|
obj_ptr = current_out["obj_ptr"] |
|
|
|
compact_current_out = { |
|
"maskmem_features": maskmem_features, |
|
"maskmem_pos_enc": maskmem_pos_enc, |
|
"pred_masks": pred_masks, |
|
"obj_ptr": obj_ptr, |
|
} |
|
return compact_current_out, pred_masks_gpu |
|
|
|
|
|
def _consolidate_temp_output_across_obj( |
|
self, |
|
inference_state, |
|
frame_idx, |
|
is_cond, |
|
run_mem_encoder, |
|
consolidate_at_video_res=False, |
|
): |
|
""" |
|
Consolidate the per-object temporary outputs in `temp_output_dict_per_obj` on |
|
a frame into a single output for all objects, including |
|
1) fill any missing objects either from `output_dict_per_obj` (if they exist in |
|
`output_dict_per_obj` for this frame) or leave them as placeholder values |
|
(if they don't exist in `output_dict_per_obj` for this frame); |
|
2) if specified, rerun memory encoder after apply non-overlapping constraints |
|
on the object scores. |
|
""" |
|
batch_size = _get_obj_num(inference_state) |
|
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" |
|
|
|
|
|
if consolidate_at_video_res: |
|
assert not run_mem_encoder, "memory encoder cannot run at video resolution" |
|
consolidated_H = inference_state["video_height"] |
|
consolidated_W = inference_state["video_width"] |
|
consolidated_mask_key = "pred_masks_video_res" |
|
else: |
|
consolidated_H = consolidated_W = self.image_size // 4 |
|
consolidated_mask_key = "pred_masks" |
|
|
|
|
|
|
|
|
|
|
|
consolidated_out = { |
|
"maskmem_features": None, |
|
"maskmem_pos_enc": None, |
|
consolidated_mask_key: torch.full( |
|
size=(batch_size, 1, consolidated_H, consolidated_W), |
|
fill_value=NO_OBJ_SCORE, |
|
dtype=torch.float32, |
|
device=inference_state["storage_device"], |
|
), |
|
"obj_ptr": torch.full( |
|
size=(batch_size, self.hidden_dim), |
|
fill_value=NO_OBJ_SCORE, |
|
dtype=torch.float32, |
|
device=inference_state["device"], |
|
), |
|
} |
|
empty_mask_ptr = None |
|
for obj_idx in range(batch_size): |
|
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx] |
|
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx] |
|
out = obj_temp_output_dict[storage_key].get(frame_idx, None) |
|
|
|
|
|
|
|
|
|
if out is None: |
|
out = obj_output_dict["cond_frame_outputs"].get(frame_idx, None) |
|
if out is None: |
|
out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx, None) |
|
|
|
|
|
|
|
if out is None: |
|
|
|
|
|
|
|
if run_mem_encoder: |
|
if empty_mask_ptr is None: |
|
empty_mask_ptr = self._get_empty_mask_ptr( |
|
inference_state, frame_idx |
|
) |
|
|
|
consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = empty_mask_ptr |
|
continue |
|
|
|
obj_mask = out["pred_masks"] |
|
consolidated_pred_masks = consolidated_out[consolidated_mask_key] |
|
if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]: |
|
consolidated_pred_masks[obj_idx : obj_idx + 1] = obj_mask |
|
else: |
|
|
|
resized_obj_mask = torch.nn.functional.interpolate( |
|
obj_mask, |
|
size=consolidated_pred_masks.shape[-2:], |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
consolidated_pred_masks[obj_idx : obj_idx + 1] = resized_obj_mask |
|
consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = out["obj_ptr"] |
|
|
|
|
|
|
|
if run_mem_encoder: |
|
device = inference_state["device"] |
|
high_res_masks = torch.nn.functional.interpolate( |
|
consolidated_out["pred_masks"].to(device, non_blocking=True), |
|
size=(self.image_size, self.image_size), |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
if self.non_overlap_masks_for_mem_enc: |
|
high_res_masks = self._apply_non_overlapping_constraints(high_res_masks) |
|
maskmem_features, maskmem_pos_enc = self._run_memory_encoder( |
|
inference_state=inference_state, |
|
frame_idx=frame_idx, |
|
batch_size=batch_size, |
|
high_res_masks=high_res_masks, |
|
is_mask_from_pts=True, |
|
) |
|
consolidated_out["maskmem_features"] = maskmem_features |
|
consolidated_out["maskmem_pos_enc"] = maskmem_pos_enc |
|
|
|
return consolidated_out |
|
|
|
|
|
def _get_orig_video_res_output(self, inference_state, any_res_masks): |
|
""" |
|
Resize the object scores to the original video resolution (video_res_masks) |
|
and apply non-overlapping constraints for final output. |
|
""" |
|
device = inference_state["device"] |
|
video_H = inference_state["video_height"] |
|
video_W = inference_state["video_width"] |
|
any_res_masks = any_res_masks.to(device, non_blocking=True) |
|
if any_res_masks.shape[-2:] == (video_H, video_W): |
|
video_res_masks = any_res_masks |
|
else: |
|
video_res_masks = torch.nn.functional.interpolate( |
|
any_res_masks, |
|
size=(video_H, video_W), |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
if self.non_overlap_masks: |
|
video_res_masks = self._apply_non_overlapping_constraints(video_res_masks) |
|
return any_res_masks, video_res_masks |
|
|
|
def init_state( |
|
self, |
|
images |
|
): |
|
"""Initialize a inference state.""" |
|
inference_state = {} |
|
inference_state["images"] = images |
|
inference_state["num_frames"] = len(images) |
|
|
|
|
|
inference_state["offload_video_to_cpu"] = False |
|
|
|
|
|
|
|
|
|
inference_state["offload_state_to_cpu"] = False |
|
|
|
inference_state["video_height"] = self.image_size |
|
inference_state["video_width"] = self.image_size |
|
inference_state["device"] = torch.device("cuda") |
|
inference_state["storage_device"] = torch.device("cuda") |
|
|
|
inference_state["point_inputs_per_obj"] = {} |
|
inference_state["mask_inputs_per_obj"] = {} |
|
|
|
inference_state["cached_features"] = {} |
|
|
|
inference_state["constants"] = {} |
|
|
|
inference_state["obj_id_to_idx"] = OrderedDict() |
|
inference_state["obj_idx_to_id"] = OrderedDict() |
|
inference_state["obj_ids"] = [] |
|
|
|
inference_state["output_dict"] = { |
|
"cond_frame_outputs": {}, |
|
"non_cond_frame_outputs": {}, |
|
} |
|
|
|
inference_state["output_dict_per_obj"] = {} |
|
|
|
|
|
inference_state["temp_output_dict_per_obj"] = {} |
|
|
|
|
|
inference_state["consolidated_frame_inds"] = { |
|
"cond_frame_outputs": set(), |
|
"non_cond_frame_outputs": set(), |
|
} |
|
|
|
inference_state["tracking_has_started"] = False |
|
inference_state["frames_already_tracked"] = {} |
|
return inference_state |
|
|
|
def add_language_embd( |
|
self, |
|
inference_state, |
|
frame_idx, |
|
obj_id, |
|
language_embd, |
|
inference=False, |
|
): |
|
obj_idx = _obj_id_to_idx(inference_state, obj_id) |
|
|
|
is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"] |
|
|
|
if is_init_cond_frame: |
|
reverse = False |
|
else: |
|
reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"] |
|
|
|
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx] |
|
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx] |
|
|
|
|
|
is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond |
|
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" |
|
|
|
|
|
|
|
prev_sam_mask_logits = None |
|
|
|
|
|
prev_out = obj_temp_output_dict[storage_key].get(frame_idx) |
|
if prev_out is None: |
|
prev_out = obj_output_dict["cond_frame_outputs"].get(frame_idx) |
|
if prev_out is None: |
|
prev_out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx) |
|
|
|
if prev_out is not None and prev_out["pred_masks"] is not None: |
|
prev_sam_mask_logits = prev_out["pred_masks"].cuda(non_blocking=True) |
|
|
|
prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0) |
|
|
|
current_out, pred_mask_gpu = self._run_single_frame_inference( |
|
inference_state=inference_state, |
|
output_dict=obj_output_dict, |
|
frame_idx=frame_idx, |
|
batch_size=1, |
|
is_init_cond_frame=is_init_cond_frame, |
|
point_inputs=None, |
|
mask_inputs=None, |
|
reverse=reverse, |
|
|
|
|
|
|
|
|
|
run_mem_encoder=False, |
|
prev_sam_mask_logits=prev_sam_mask_logits, |
|
|
|
language_embd=language_embd, |
|
) |
|
|
|
obj_temp_output_dict[storage_key][frame_idx] = current_out |
|
|
|
|
|
obj_ids = inference_state["obj_ids"] |
|
if inference: |
|
_consolidated_out = self._consolidate_temp_output_across_obj( |
|
inference_state, |
|
frame_idx, |
|
is_cond=is_cond, |
|
run_mem_encoder=False, |
|
consolidate_at_video_res=False, |
|
) |
|
|
|
|
|
|
|
return frame_idx, obj_ids, pred_mask_gpu |
|
|
|
|
|
def _clear_non_cond_mem_around_input(self, inference_state, frame_idx): |
|
""" |
|
Remove the non-conditioning memory around the input frame. When users provide |
|
correction clicks, the surrounding frames' non-conditioning memories can still |
|
contain outdated object appearance information and could confuse the model. |
|
|
|
This method clears those non-conditioning memories surrounding the interacted |
|
frame to avoid giving the model both old and new information about the object. |
|
""" |
|
r = self.memory_temporal_stride_for_eval |
|
frame_idx_begin = frame_idx - r * self.num_maskmem |
|
frame_idx_end = frame_idx + r * self.num_maskmem |
|
output_dict = inference_state["output_dict"] |
|
non_cond_frame_outputs = output_dict["non_cond_frame_outputs"] |
|
for t in range(frame_idx_begin, frame_idx_end + 1): |
|
non_cond_frame_outputs.pop(t, None) |
|
for obj_output_dict in inference_state["output_dict_per_obj"].values(): |
|
obj_output_dict["non_cond_frame_outputs"].pop(t, None) |
|
|
|
def _run_memory_encoder( |
|
self, inference_state, frame_idx, batch_size, high_res_masks, is_mask_from_pts |
|
): |
|
""" |
|
Run the memory encoder on `high_res_masks`. This is usually after applying |
|
non-overlapping constraints to object scores. Since their scores changed, their |
|
memory also need to be computed again with the memory encoder. |
|
""" |
|
|
|
_, _, current_vision_feats, _, feat_sizes = self._get_image_feature( |
|
inference_state, frame_idx, batch_size |
|
) |
|
maskmem_features, maskmem_pos_enc = self._encode_new_memory( |
|
current_vision_feats=current_vision_feats, |
|
feat_sizes=feat_sizes, |
|
pred_masks_high_res=high_res_masks, |
|
is_mask_from_pts=is_mask_from_pts, |
|
) |
|
|
|
|
|
storage_device = inference_state["storage_device"] |
|
maskmem_features = maskmem_features.to(torch.bfloat16) |
|
maskmem_features = maskmem_features.to(storage_device, non_blocking=True) |
|
|
|
maskmem_pos_enc = _get_maskmem_pos_enc( |
|
inference_state, {"maskmem_pos_enc": maskmem_pos_enc} |
|
) |
|
return maskmem_features, maskmem_pos_enc |
|
|
|
def _add_output_per_object( |
|
self, inference_state, frame_idx, current_out, storage_key |
|
): |
|
""" |
|
Split a multi-object output into per-object output slices and add them into |
|
`output_dict_per_obj`. The resulting slices share the same tensor storage. |
|
""" |
|
maskmem_features = current_out["maskmem_features"] |
|
assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor) |
|
|
|
maskmem_pos_enc = current_out["maskmem_pos_enc"] |
|
assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list) |
|
|
|
output_dict_per_obj = inference_state["output_dict_per_obj"] |
|
for obj_idx, obj_output_dict in output_dict_per_obj.items(): |
|
obj_slice = slice(obj_idx, obj_idx + 1) |
|
obj_out = { |
|
"maskmem_features": None, |
|
"maskmem_pos_enc": None, |
|
"pred_masks": current_out["pred_masks"][obj_slice], |
|
"obj_ptr": current_out["obj_ptr"][obj_slice], |
|
} |
|
if maskmem_features is not None: |
|
obj_out["maskmem_features"] = maskmem_features[obj_slice] |
|
if maskmem_pos_enc is not None: |
|
obj_out["maskmem_pos_enc"] = [x[obj_slice] for x in maskmem_pos_enc] |
|
obj_output_dict[storage_key][frame_idx] = obj_out |
|
|
|
@torch.inference_mode() |
|
def propagate_in_video_preflight(self, inference_state): |
|
"""Prepare inference_state and consolidate temporary outputs before tracking.""" |
|
|
|
inference_state["tracking_has_started"] = True |
|
batch_size = _get_obj_num(inference_state) |
|
|
|
|
|
|
|
temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"] |
|
output_dict = inference_state["output_dict"] |
|
|
|
|
|
|
|
consolidated_frame_inds = inference_state["consolidated_frame_inds"] |
|
for is_cond in [False, True]: |
|
|
|
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" |
|
|
|
|
|
|
|
temp_frame_inds = set() |
|
for obj_temp_output_dict in temp_output_dict_per_obj.values(): |
|
temp_frame_inds.update(obj_temp_output_dict[storage_key].keys()) |
|
consolidated_frame_inds[storage_key].update(temp_frame_inds) |
|
|
|
for frame_idx in temp_frame_inds: |
|
consolidated_out = self._consolidate_temp_output_across_obj( |
|
inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=True |
|
) |
|
|
|
output_dict[storage_key][frame_idx] = consolidated_out |
|
self._add_output_per_object( |
|
inference_state, frame_idx, consolidated_out, storage_key |
|
) |
|
clear_non_cond_mem = self.clear_non_cond_mem_around_input and ( |
|
self.clear_non_cond_mem_for_multi_obj or batch_size <= 1 |
|
) |
|
if clear_non_cond_mem: |
|
|
|
self._clear_non_cond_mem_around_input(inference_state, frame_idx) |
|
|
|
|
|
for obj_temp_output_dict in temp_output_dict_per_obj.values(): |
|
obj_temp_output_dict[storage_key].clear() |
|
|
|
|
|
|
|
for frame_idx in output_dict["cond_frame_outputs"]: |
|
output_dict["non_cond_frame_outputs"].pop(frame_idx, None) |
|
for obj_output_dict in inference_state["output_dict_per_obj"].values(): |
|
for frame_idx in obj_output_dict["cond_frame_outputs"]: |
|
obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None) |
|
for frame_idx in consolidated_frame_inds["cond_frame_outputs"]: |
|
assert frame_idx in output_dict["cond_frame_outputs"] |
|
consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx) |
|
|
|
|
|
|
|
all_consolidated_frame_inds = ( |
|
consolidated_frame_inds["cond_frame_outputs"] |
|
| consolidated_frame_inds["non_cond_frame_outputs"] |
|
) |
|
input_frames_inds = set() |
|
for point_inputs_per_frame in inference_state["point_inputs_per_obj"].values(): |
|
input_frames_inds.update(point_inputs_per_frame.keys()) |
|
for mask_inputs_per_frame in inference_state["mask_inputs_per_obj"].values(): |
|
input_frames_inds.update(mask_inputs_per_frame.keys()) |
|
|
|
|
|
|
|
|
|
@torch.inference_mode() |
|
def propagate_in_video( |
|
self, |
|
inference_state, |
|
start_frame_idx=None, |
|
max_frame_num_to_track=None, |
|
reverse=False, |
|
): |
|
"""Propagate the input points across frames to track in the entire video.""" |
|
self.propagate_in_video_preflight(inference_state) |
|
|
|
output_dict = inference_state["output_dict"] |
|
consolidated_frame_inds = inference_state["consolidated_frame_inds"] |
|
obj_ids = inference_state["obj_ids"] |
|
num_frames = inference_state["num_frames"] |
|
batch_size = _get_obj_num(inference_state) |
|
if len(output_dict["cond_frame_outputs"]) == 0: |
|
raise RuntimeError("No points are provided; please add points first") |
|
clear_non_cond_mem = self.clear_non_cond_mem_around_input and ( |
|
self.clear_non_cond_mem_for_multi_obj or batch_size <= 1 |
|
) |
|
|
|
|
|
if start_frame_idx is None: |
|
|
|
start_frame_idx = min(output_dict["cond_frame_outputs"]) |
|
if max_frame_num_to_track is None: |
|
|
|
max_frame_num_to_track = num_frames |
|
if reverse: |
|
end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0) |
|
if start_frame_idx > 0: |
|
processing_order = range(start_frame_idx, end_frame_idx - 1, -1) |
|
else: |
|
processing_order = [] |
|
else: |
|
end_frame_idx = min( |
|
start_frame_idx + max_frame_num_to_track, num_frames - 1 |
|
) |
|
processing_order = range(start_frame_idx, end_frame_idx + 1) |
|
|
|
for frame_idx in tqdm(processing_order, desc="propagate in video"): |
|
|
|
|
|
|
|
|
|
if frame_idx in consolidated_frame_inds["cond_frame_outputs"]: |
|
storage_key = "cond_frame_outputs" |
|
current_out = output_dict[storage_key][frame_idx] |
|
pred_masks = current_out["pred_masks"] |
|
if clear_non_cond_mem: |
|
|
|
self._clear_non_cond_mem_around_input(inference_state, frame_idx) |
|
elif frame_idx in consolidated_frame_inds["non_cond_frame_outputs"]: |
|
storage_key = "non_cond_frame_outputs" |
|
current_out = output_dict[storage_key][frame_idx] |
|
pred_masks = current_out["pred_masks"] |
|
else: |
|
storage_key = "non_cond_frame_outputs" |
|
current_out, pred_masks = self._run_single_frame_inference( |
|
inference_state=inference_state, |
|
output_dict=output_dict, |
|
frame_idx=frame_idx, |
|
batch_size=batch_size, |
|
is_init_cond_frame=False, |
|
point_inputs=None, |
|
mask_inputs=None, |
|
reverse=reverse, |
|
run_mem_encoder=True, |
|
) |
|
output_dict[storage_key][frame_idx] = current_out |
|
|
|
|
|
self._add_output_per_object( |
|
inference_state, frame_idx, current_out, storage_key |
|
) |
|
inference_state["frames_already_tracked"][frame_idx] = {"reverse": reverse} |
|
|
|
|
|
|
|
_, video_res_masks = self._get_orig_video_res_output( |
|
inference_state, pred_masks |
|
) |
|
yield frame_idx, obj_ids, video_res_masks |
|
|
|
def fill_holes_in_mask_scores(mask, max_area): |
|
""" |
|
A post processor to fill small holes in mask scores with area under `max_area`. |
|
""" |
|
|
|
|
|
assert max_area > 0, "max_area must be positive" |
|
labels, areas = get_connected_components(mask <= 0) |
|
is_hole = (labels > 0) & (areas <= max_area) |
|
|
|
mask = torch.where(is_hole, 0.1, mask) |
|
return mask |
|
|
|
def get_connected_components(mask): |
|
""" |
|
Get the connected components (8-connectivity) of binary masks of shape (N, 1, H, W). |
|
|
|
Inputs: |
|
- mask: A binary mask tensor of shape (N, 1, H, W), where 1 is foreground and 0 is |
|
background. |
|
|
|
Outputs: |
|
- labels: A tensor of shape (N, 1, H, W) containing the connected component labels |
|
for foreground pixels and 0 for background pixels. |
|
- counts: A tensor of shape (N, 1, H, W) containing the area of the connected |
|
components for foreground pixels and 0 for background pixels. |
|
""" |
|
from torch.utils.cpp_extension import load |
|
os.system("wget https://github.com/facebookresearch/sam2/blob/main/sam2/csrc/connected_components.cu") |
|
get_connected_componnets = load( |
|
name="get_connected_componnets", |
|
sources=["./connected_components.cu"], |
|
verbose=True, |
|
extra_cuda_cflags=[ |
|
"-DCUDA_HAS_FP16=1", |
|
"-D__CUDA_NO_HALF_OPERATORS__", |
|
"-D__CUDA_NO_HALF_CONVERSIONS__", |
|
"-D__CUDA_NO_HALF2_OPERATORS__", |
|
] |
|
) |
|
|
|
return get_connected_componnets.get_connected_componnets(mask.to(torch.uint8).contiguous()) |