--- license: agpl-3.0 tags: - chat datasets: - NewEden/CivitAI-SD-Prompts License: agpl-3.0 Language: - En Pipeline_tag: text-generation Base_model: NewEden/Qwen-1.5B-Claude Tags: - Chat --- --- ### exl2 quant (measurement.json in main branch) --- ### check revisions for quants --- This is the first in a line of models dedicated to creating Stable-Diffusion prompts when given a character appearance, This has been finetuned ontop of [NewEden/Qwen-1.5B-Claude](https://huggingface.co/NewEden/Qwen-1.5B-Claude). ## Prompting Model has been tuned with the Alapaca formatting. A typical input would look like this: ``` ### Instruction: Create a prompt for Stable Diffusion based on the information below. ### Input: Rae has short has dark brown hair and brown eyes, She is commonly seen wearing her Royal Academy uniform, which consists of a red jacket with gold lines, a white ruffled necktie, a red bow tie with an attached blue gem, and a long black skirt with white lines. Along with her uniform, she wears black leggings and brown shoes. ### Response: ``` ## System Prompting I would highly recommend using the following system prompt for this model. ``` Create a prompt for Stable Diffusion based on the information below. ``` ## Axolotl Config
See Axolotl Trainer config ```yaml base_model: NewEden/Qwen-1.5B-Claude model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer trust_remote_code: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: civit-slop-combined.jsonl type: alpaca conversation: mpt-30b-instruct chat_template: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs/sd-prompter sequence_len: 2048 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true adapter: lora_model_dir: lora_r: lora_alpha: lora_dropout: lora_target_linear: true lora_fan_in_fan_out: wandb_project: SDprompt-qwen wandb_entity: wandb_watch: wandb_name: qwen1.5b-2 wandb_log_model: gradient_accumulation_steps: 64 micro_batch_size: 2 num_epochs: 3 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.00002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.05 evals_per_epoch: 4 saves_per_epoch: 1 debug: #deepspeed: deepspeed_configs/zero2.json #deepspeed: /training/axolotl/axolotl/deepspeed_configs/zero2.json weight_decay: 0.0 #fsdp: #fsdp_config: # fsdp_limit_all_gathers: true # fsdp_sync_module_states: true # fsdp_offload_params: true # fsdp_use_orig_params: false # fsdp_cpu_ram_efficient_loading: true # fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP # fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer # fsdp_state_dict_type: FULL_STATE_DICT special_tokens: ```

## Credits Thank you to [Kubernetes Bad](https://huggingface.co/kubernetes-bad) ## Training The training was done for 2 epochs. I used 2 x [RTX 6000s](https://www.nvidia.com/en-us/design-visualization/rtx-6000/) GPUs graciously provided by [Kubernetes Bad](https://huggingface.co/kubernetes-bad) for the full-parameter fine-tuning of the model.