|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
from typing import List |
|
|
|
import numpy as np |
|
import triton_python_backend_utils as pb_utils |
|
from transformers import AutoTokenizer, LlamaTokenizer, T5Tokenizer |
|
|
|
|
|
class TritonPythonModel: |
|
"""Your Python model must use the same class name. Every Python model |
|
that is created must have "TritonPythonModel" as the class name. |
|
""" |
|
|
|
def initialize(self, args): |
|
"""`initialize` is called only once when the model is being loaded. |
|
Implementing `initialize` function is optional. This function allows |
|
the model to initialize any state associated with this model. |
|
Parameters |
|
---------- |
|
args : dict |
|
Both keys and values are strings. The dictionary keys and values are: |
|
* model_config: A JSON string containing the model configuration |
|
* model_instance_kind: A string containing model instance kind |
|
* model_instance_device_id: A string containing model instance device ID |
|
* model_repository: Model repository path |
|
* model_version: Model version |
|
* model_name: Model name |
|
""" |
|
|
|
model_config = json.loads(args['model_config']) |
|
tokenizer_dir = model_config['parameters']['tokenizer_dir'][ |
|
'string_value'] |
|
tokenizer_type = model_config['parameters']['tokenizer_type'][ |
|
'string_value'] |
|
self.add_special_tokens = model_config['parameters'].get( |
|
'add_special_tokens', |
|
{'string_value': "false"})['string_value'].lower() in [ |
|
'true', '1', 't', 'y', 'yes' |
|
] |
|
|
|
if tokenizer_type == 't5': |
|
self.tokenizer = T5Tokenizer(vocab_file=tokenizer_dir, |
|
padding_side='left') |
|
elif tokenizer_type == 'auto': |
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
tokenizer_dir, padding_side='left', trust_remote_code=True) |
|
elif tokenizer_type == 'llama': |
|
self.tokenizer = LlamaTokenizer.from_pretrained( |
|
tokenizer_dir, legacy=False, padding_side='left') |
|
self.tokenizer.legacy = True |
|
else: |
|
raise AttributeError( |
|
f'Unexpected tokenizer type: {tokenizer_type}') |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
|
|
self.pad_id = self.tokenizer.encode(self.tokenizer.pad_token, |
|
add_special_tokens=False)[0] |
|
|
|
|
|
output_names = [ |
|
"INPUT_ID", "REQUEST_INPUT_LEN", "BAD_WORDS_IDS", "STOP_WORDS_IDS" |
|
] |
|
input_names = ["EMBEDDING_BIAS_WORDS", "EMBEDDING_BIAS_WEIGHTS"] |
|
for input_name in input_names: |
|
setattr( |
|
self, |
|
input_name.lower() + "_dtype", |
|
pb_utils.triton_string_to_numpy( |
|
pb_utils.get_input_config_by_name( |
|
model_config, input_name)['data_type'])) |
|
|
|
for output_name in output_names: |
|
setattr( |
|
self, |
|
output_name.lower() + "_dtype", |
|
pb_utils.triton_string_to_numpy( |
|
pb_utils.get_output_config_by_name( |
|
model_config, output_name)['data_type'])) |
|
|
|
def execute(self, requests): |
|
"""`execute` must be implemented in every Python model. `execute` |
|
function receives a list of pb_utils.InferenceRequest as the only |
|
argument. This function is called when an inference is requested |
|
for this model. Depending on the batching configuration (e.g. Dynamic |
|
Batching) used, `requests` may contain multiple requests. Every |
|
Python model, must create one pb_utils.InferenceResponse for every |
|
pb_utils.InferenceRequest in `requests`. If there is an error, you can |
|
set the error argument when creating a pb_utils.InferenceResponse. |
|
Parameters |
|
---------- |
|
requests : list |
|
A list of pb_utils.InferenceRequest |
|
Returns |
|
------- |
|
list |
|
A list of pb_utils.InferenceResponse. The length of this list must |
|
be the same as `requests` |
|
""" |
|
|
|
responses = [] |
|
|
|
|
|
|
|
logger = pb_utils.Logger |
|
for idx, request in enumerate(requests): |
|
|
|
query = pb_utils.get_input_tensor_by_name(request, |
|
'QUERY').as_numpy() |
|
batch_dim = query.shape[0] |
|
if batch_dim != 1: |
|
|
|
err_str = "Inflight batching backend expects requests with batch size of 1." |
|
logger.log_error(err_str) |
|
responses.append( |
|
pb_utils.InferenceResponse( |
|
output_tensors=[], |
|
error=pb_utils.TritonError(err_str))) |
|
continue |
|
|
|
request_output_len = pb_utils.get_input_tensor_by_name( |
|
request, 'REQUEST_OUTPUT_LEN').as_numpy() |
|
|
|
bad_words_dict = pb_utils.get_input_tensor_by_name( |
|
request, 'BAD_WORDS_DICT') |
|
if bad_words_dict is not None: |
|
bad_words_dict = bad_words_dict.as_numpy() |
|
|
|
stop_words_dict = pb_utils.get_input_tensor_by_name( |
|
request, 'STOP_WORDS_DICT') |
|
if stop_words_dict is not None: |
|
stop_words_dict = stop_words_dict.as_numpy() |
|
|
|
embedding_bias_words = pb_utils.get_input_tensor_by_name( |
|
request, 'EMBEDDING_BIAS_WORDS') |
|
if embedding_bias_words is not None: |
|
embedding_bias_words = embedding_bias_words.as_numpy() |
|
|
|
embedding_bias_weights = pb_utils.get_input_tensor_by_name( |
|
request, 'EMBEDDING_BIAS_WEIGHTS') |
|
if embedding_bias_weights is not None: |
|
embedding_bias_weights = embedding_bias_weights.as_numpy() |
|
|
|
|
|
input_id, request_input_len = self._create_request(query) |
|
bad_words = self._to_word_list_format(bad_words_dict) |
|
stop_words = self._to_word_list_format(stop_words_dict) |
|
|
|
embedding_bias = self._get_embedding_bias( |
|
embedding_bias_words, embedding_bias_weights, |
|
self.embedding_bias_weights_dtype) |
|
|
|
|
|
|
|
input_id_tensor = pb_utils.Tensor( |
|
'INPUT_ID', input_id.astype(self.input_id_dtype)) |
|
request_input_len_tensor = pb_utils.Tensor( |
|
'REQUEST_INPUT_LEN', |
|
request_input_len.astype(self.request_input_len_dtype)) |
|
request_output_len_tensor = pb_utils.Tensor( |
|
'REQUEST_OUTPUT_LEN', request_output_len) |
|
bad_words_ids_tensor = pb_utils.Tensor('BAD_WORDS_IDS', bad_words) |
|
stop_words_ids_tensor = pb_utils.Tensor('STOP_WORDS_IDS', |
|
stop_words) |
|
embedding_bias_tensor = pb_utils.Tensor('EMBEDDING_BIAS', |
|
embedding_bias) |
|
|
|
inference_response = pb_utils.InferenceResponse(output_tensors=[ |
|
input_id_tensor, bad_words_ids_tensor, stop_words_ids_tensor, |
|
request_input_len_tensor, request_output_len_tensor, |
|
embedding_bias_tensor |
|
]) |
|
responses.append(inference_response) |
|
|
|
|
|
|
|
return responses |
|
|
|
def finalize(self): |
|
"""`finalize` is called only once when the model is being unloaded. |
|
Implementing `finalize` function is optional. This function allows |
|
the model to perform any necessary clean ups before exit. |
|
""" |
|
print('Cleaning up...') |
|
|
|
def _create_request(self, query): |
|
""" |
|
query : batch string (2D numpy array) |
|
""" |
|
start_ids = [ |
|
np.array( |
|
self.tokenizer.encode( |
|
s[0].decode(), |
|
add_special_tokens=self.add_special_tokens)).astype(int) |
|
for s in query |
|
] |
|
start_lengths = np.array([[len(ids)] for ids in start_ids]).astype(int) |
|
|
|
max_len = 0 |
|
for seq in start_ids: |
|
max_len = max(max_len, seq.shape[0]) |
|
start_ids = np.stack([ |
|
np.pad(seq, (0, max_len - seq.shape[0]), |
|
'constant', |
|
constant_values=(0, self.pad_id)) for seq in start_ids |
|
]) |
|
|
|
return start_ids, start_lengths |
|
|
|
def _to_word_list_format(self, word_lists: List[List[str | bytes]]): |
|
''' |
|
word_lists format: |
|
len(word_lists) == batch_size |
|
word_lists[i] means the words associated to batch item i. A "word" may actually be any string. Like "lorem" or "lorem ipsum". |
|
''' |
|
assert self.tokenizer != None, "need to set tokenizer" |
|
|
|
if word_lists is None: |
|
|
|
return np.empty([1, 2, 0], dtype="int32") |
|
|
|
flat_ids = [] |
|
offsets = [] |
|
for word_list in word_lists: |
|
item_flat_ids = [] |
|
item_offsets = [] |
|
|
|
for word in word_list: |
|
if isinstance(word, bytes): |
|
word = word.decode() |
|
|
|
ids = self.tokenizer.encode(word, add_special_tokens=False) |
|
if len(ids) == 0: |
|
continue |
|
|
|
item_flat_ids += ids |
|
item_offsets.append(len(ids)) |
|
|
|
flat_ids.append(np.array(item_flat_ids)) |
|
offsets.append(np.cumsum(np.array(item_offsets))) |
|
|
|
pad_to = max(1, max(len(ids) for ids in flat_ids)) |
|
|
|
for i, (ids, offs) in enumerate(zip(flat_ids, offsets)): |
|
flat_ids[i] = np.pad(ids, (0, pad_to - len(ids)), |
|
constant_values=0) |
|
offsets[i] = np.pad(offs, (0, pad_to - len(offs)), |
|
constant_values=-1) |
|
|
|
return np.array([flat_ids, offsets], dtype="int32").transpose( |
|
(1, 0, 2)) |
|
|
|
def _get_embedding_bias(self, embedding_bias_words, embedding_bias_weights, |
|
bias_dtype): |
|
|
|
assert self.tokenizer != None, "need to set tokenizer" |
|
|
|
if embedding_bias_words is None or embedding_bias_weights is None: |
|
return np.empty([1, 0], dtype=self.embedding_bias_weights_dtype) |
|
|
|
batch_embedding_bias = [] |
|
for words, weights in zip(embedding_bias_words, |
|
embedding_bias_weights): |
|
|
|
vocab_size = self.tokenizer.vocab_size |
|
embedding_bias = [0.] * vocab_size |
|
|
|
assert len(words) == len( |
|
weights |
|
), "Embedding bias words must have same dimension as embedding bias weights" |
|
|
|
for word, weight in zip(words, weights): |
|
if isinstance(word, bytes): |
|
word = word.decode() |
|
ids = self.tokenizer.encode(word) |
|
|
|
if len(ids) == 0: |
|
continue |
|
|
|
for id in ids: |
|
embedding_bias[id] += weight |
|
|
|
batch_embedding_bias.append(np.array(embedding_bias)) |
|
|
|
return np.array(batch_embedding_bias, dtype=bias_dtype) |
|
|