Davegd's picture
Upload handler.py
76c977c
from typing import Dict, List, Any
from transformers import pipeline
class EndpointHandler():
def __init__(self, path=""):
self.pipeline = pipeline("text-classification", model=path)
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
data args:
inputs (:obj: `str`)
date (:obj: `str`)
Return:
A :obj:`list` | `dict`: will be serialized and returned
"""
# get inputs
inputs = data.pop("inputs", data)
# run normal prediction
prediction = self.pipeline(inputs)
# Dictionary to map labels
label_mapping = {
'LABEL_0': 'credit_card',
'LABEL_1': 'credit_reporting',
'LABEL_2': 'debt_collection',
'LABEL_3': 'mortgages_and_loans',
'LABEL_4': 'retail_banking'
}
# Apply the mapping to the output
mapped_output = [{'label': label_mapping.get(item['label'], item['label']), 'score': item['score']} for item in
prediction]
return mapped_output