--- license: apache-2.0 base_model: microsoft/swinv2-large-patch4-window12to24-192to384-22kto1k-ft tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swinv2-large-patch4-window12to24-192to384-22kto1k-ft-microbes results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7129629629629629 --- # swinv2-large-patch4-window12to24-192to384-22kto1k-ft-microbes This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12to24-192to384-22kto1k-ft](https://huggingface.co/microsoft/swinv2-large-patch4-window12to24-192to384-22kto1k-ft) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0311 - Accuracy: 0.7130 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.8445 | 0.98 | 15 | 2.8535 | 0.3194 | | 2.1358 | 1.97 | 30 | 1.9654 | 0.4491 | | 1.5947 | 2.95 | 45 | 1.4172 | 0.6204 | | 1.045 | 4.0 | 61 | 1.1698 | 0.6806 | | 0.985 | 4.98 | 76 | 1.1927 | 0.6852 | | 0.775 | 5.97 | 91 | 1.1012 | 0.6898 | | 0.7207 | 6.95 | 106 | 1.0311 | 0.7130 | | 0.6611 | 7.87 | 120 | 1.0311 | 0.6991 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cpu - Datasets 2.14.4 - Tokenizers 0.13.3