--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1401 - Accuracy: 0.937 - F1: 0.9371 - Precision: 0.9375 - Recall: 0.937 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.204 | 1.0 | 250 | 0.1767 | 0.9285 | 0.9294 | 0.9323 | 0.9285 | | 0.1361 | 2.0 | 500 | 0.1595 | 0.93 | 0.9306 | 0.9330 | 0.93 | | 0.1057 | 3.0 | 750 | 0.1460 | 0.9375 | 0.9383 | 0.9406 | 0.9375 | | 0.0836 | 4.0 | 1000 | 0.1384 | 0.9405 | 0.9405 | 0.9408 | 0.9405 | | 0.069 | 5.0 | 1250 | 0.1401 | 0.937 | 0.9371 | 0.9375 | 0.937 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0