--- license: mit library_name: peft tags: - alignment-handbook - generated_from_trainer - trl - dpo base_model: microsoft/phi-2 datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: phi-2-gpo-renew2-b0.001-v4-i1 results: [] --- # phi-2-gpo-renew2-b0.001-v4-i1 This model is a fine-tuned version of [DUAL-GPO/phi-2-gpo-renew2-b0.001-i0](https://huggingface.co/DUAL-GPO/phi-2-gpo-renew2-b0.001-i0) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.0536 - Rewards/chosen: -0.0036 - Rewards/rejected: -0.0039 - Rewards/accuracies: 0.4695 - Rewards/margins: 0.0002 - Logps/rejected: -371.0876 - Logps/chosen: -399.9150 - Logits/rejected: -0.7623 - Logits/chosen: -0.8574 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.1203 | 0.32 | 100 | 0.0537 | -0.0024 | -0.0024 | 0.4555 | 0.0001 | -369.6694 | -398.6797 | -0.7167 | -0.8167 | | 0.1671 | 0.64 | 200 | 0.0537 | -0.0036 | -0.0037 | 0.4670 | 0.0001 | -370.9240 | -399.8586 | -0.7745 | -0.8674 | | 0.1393 | 0.96 | 300 | 0.0536 | -0.0038 | -0.0040 | 0.4625 | 0.0003 | -371.2791 | -400.0731 | -0.7820 | -0.8772 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.14.6 - Tokenizers 0.15.2