Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
# Load your pre-trained model (e.g., TensorFlow Keras model)
|
| 7 |
+
# Replace "currency_model.h5" with the actual path to your model
|
| 8 |
+
model = tf.keras.models.load_model("counterfeitmodel.h5")
|
| 9 |
+
|
| 10 |
+
# Define the prediction function
|
| 11 |
+
def detect_currency(image):
|
| 12 |
+
"""
|
| 13 |
+
Function to detect if the input image is of a real or fake currency note.
|
| 14 |
+
:param image: Uploaded image (.jpg)
|
| 15 |
+
:return: String indicating 'Real' or 'Fake'
|
| 16 |
+
"""
|
| 17 |
+
# Resize the image to match the input size expected by the model
|
| 18 |
+
input_size = (200, 200) # Replace with your model's expected input size
|
| 19 |
+
image = image.resize(input_size)
|
| 20 |
+
|
| 21 |
+
# Convert the image to a NumPy array
|
| 22 |
+
image_array = np.array(image) / 255.0 # Normalize pixel values to [0, 1]
|
| 23 |
+
|
| 24 |
+
# Add batch dimension
|
| 25 |
+
image_array = np.expand_dims(image_array, axis=0)
|
| 26 |
+
|
| 27 |
+
# Perform prediction
|
| 28 |
+
prediction = model.predict(image_array)
|
| 29 |
+
|
| 30 |
+
# Assume the model outputs a probability for 'Real' (1) and 'Fake' (0)
|
| 31 |
+
is_real = prediction[0][0] > 0.5
|
| 32 |
+
return "Real Currency Note" if is_real else "Fake Currency Note"
|
| 33 |
+
css ="""
|
| 34 |
+
#currency-image {
|
| 35 |
+
border: 2px solid #00BFFF;
|
| 36 |
+
border-radius: 10px;
|
| 37 |
+
padding: 10px;
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
#prediction-output {
|
| 41 |
+
font-size: 20px;
|
| 42 |
+
font-weight: bold;
|
| 43 |
+
color: #2c3e50;
|
| 44 |
+
margin-top: 20px;
|
| 45 |
+
text-align: center;
|
| 46 |
+
background-color: #ecf0f1;
|
| 47 |
+
border: 2px solid #00BFFF;
|
| 48 |
+
border-radius: 10px;
|
| 49 |
+
padding: 10px;
|
| 50 |
+
}
|
| 51 |
+
"""
|
| 52 |
+
# Create the Gradio interface
|
| 53 |
+
interface = gr.Interface(
|
| 54 |
+
fn=detect_currency, # The function to run
|
| 55 |
+
inputs=gr.Image(type="pil", label="Upload Currency Image (.jpg)"), # Input type
|
| 56 |
+
outputs="text", # Output type
|
| 57 |
+
title="Currency Note Detector",
|
| 58 |
+
description="Upload a .jpg image of a currency note to check if it's real or fake.",
|
| 59 |
+
theme=gr.themes.Base(), # Hugging Face theme for a professional look
|
| 60 |
+
live=True,
|
| 61 |
+
css=css,
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
# Add the custom CSS to the interface
|
| 65 |
+
|
| 66 |
+
# Launch the app
|
| 67 |
+
interface.launch(share=True)
|